Description: Either a nonzero real or its negation is a positive real, but not both. Axiom 8 of Apostol p. 20. (Contributed by NM, 7-Nov-2008)
Ref | Expression | ||
---|---|---|---|
Assertion | rpneg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re | |
|
2 | ltle | |
|
3 | 1 2 | mpan | |
4 | 3 | imp | |
5 | 4 | olcd | |
6 | renegcl | |
|
7 | 6 | pm2.24d | |
8 | 7 | adantr | |
9 | ltlen | |
|
10 | 1 9 | mpan | |
11 | 10 | biimprd | |
12 | 11 | expcomd | |
13 | 12 | imp | |
14 | 8 13 | jaod | |
15 | simpl | |
|
16 | 14 15 | jctild | |
17 | 5 16 | impbid2 | |
18 | lenlt | |
|
19 | 1 18 | mpan | |
20 | lt0neg1 | |
|
21 | 20 | notbid | |
22 | 19 21 | bitrd | |
23 | 22 | adantr | |
24 | 23 | orbi2d | |
25 | 17 24 | bitrd | |
26 | ianor | |
|
27 | 25 26 | bitr4di | |
28 | elrp | |
|
29 | elrp | |
|
30 | 29 | notbii | |
31 | 27 28 30 | 3bitr4g | |