Metamath Proof Explorer


Theorem rpneg

Description: Either a nonzero real or its negation is a positive real, but not both. Axiom 8 of Apostol p. 20. (Contributed by NM, 7-Nov-2008)

Ref Expression
Assertion rpneg AA0A+¬A+

Proof

Step Hyp Ref Expression
1 0re 0
2 ltle 0A0<A0A
3 1 2 mpan A0<A0A
4 3 imp A0<A0A
5 4 olcd A0<A¬A0A
6 renegcl AA
7 6 pm2.24d A¬A0<A
8 7 adantr AA0¬A0<A
9 ltlen 0A0<A0AA0
10 1 9 mpan A0<A0AA0
11 10 biimprd A0AA00<A
12 11 expcomd AA00A0<A
13 12 imp AA00A0<A
14 8 13 jaod AA0¬A0A0<A
15 simpl AA0A
16 14 15 jctild AA0¬A0AA0<A
17 5 16 impbid2 AA0A0<A¬A0A
18 lenlt 0A0A¬A<0
19 1 18 mpan A0A¬A<0
20 lt0neg1 AA<00<A
21 20 notbid A¬A<0¬0<A
22 19 21 bitrd A0A¬0<A
23 22 adantr AA00A¬0<A
24 23 orbi2d AA0¬A0A¬A¬0<A
25 17 24 bitrd AA0A0<A¬A¬0<A
26 ianor ¬A0<A¬A¬0<A
27 25 26 bitr4di AA0A0<A¬A0<A
28 elrp A+A0<A
29 elrp A+A0<A
30 29 notbii ¬A+¬A0<A
31 27 28 30 3bitr4g AA0A+¬A+