Metamath Proof Explorer


Theorem rpneg

Description: Either a nonzero real or its negation is a positive real, but not both. Axiom 8 of Apostol p. 20. (Contributed by NM, 7-Nov-2008)

Ref Expression
Assertion rpneg A A 0 A + ¬ A +

Proof

Step Hyp Ref Expression
1 0re 0
2 ltle 0 A 0 < A 0 A
3 1 2 mpan A 0 < A 0 A
4 3 imp A 0 < A 0 A
5 4 olcd A 0 < A ¬ A 0 A
6 renegcl A A
7 6 pm2.24d A ¬ A 0 < A
8 7 adantr A A 0 ¬ A 0 < A
9 ltlen 0 A 0 < A 0 A A 0
10 1 9 mpan A 0 < A 0 A A 0
11 10 biimprd A 0 A A 0 0 < A
12 11 expcomd A A 0 0 A 0 < A
13 12 imp A A 0 0 A 0 < A
14 8 13 jaod A A 0 ¬ A 0 A 0 < A
15 simpl A A 0 A
16 14 15 jctild A A 0 ¬ A 0 A A 0 < A
17 5 16 impbid2 A A 0 A 0 < A ¬ A 0 A
18 lenlt 0 A 0 A ¬ A < 0
19 1 18 mpan A 0 A ¬ A < 0
20 lt0neg1 A A < 0 0 < A
21 20 notbid A ¬ A < 0 ¬ 0 < A
22 19 21 bitrd A 0 A ¬ 0 < A
23 22 adantr A A 0 0 A ¬ 0 < A
24 23 orbi2d A A 0 ¬ A 0 A ¬ A ¬ 0 < A
25 17 24 bitrd A A 0 A 0 < A ¬ A ¬ 0 < A
26 ianor ¬ A 0 < A ¬ A ¬ 0 < A
27 25 26 bitr4di A A 0 A 0 < A ¬ A 0 < A
28 elrp A + A 0 < A
29 elrp A + A 0 < A
30 29 notbii ¬ A + ¬ A 0 < A
31 27 28 30 3bitr4g A A 0 A + ¬ A +