| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0re |
⊢ 0 ∈ ℝ |
| 2 |
|
ltle |
⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 < 𝐴 → 0 ≤ 𝐴 ) ) |
| 3 |
1 2
|
mpan |
⊢ ( 𝐴 ∈ ℝ → ( 0 < 𝐴 → 0 ≤ 𝐴 ) ) |
| 4 |
3
|
imp |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 ≤ 𝐴 ) |
| 5 |
4
|
olcd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( ¬ - 𝐴 ∈ ℝ ∨ 0 ≤ 𝐴 ) ) |
| 6 |
|
renegcl |
⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) |
| 7 |
6
|
pm2.24d |
⊢ ( 𝐴 ∈ ℝ → ( ¬ - 𝐴 ∈ ℝ → 0 < 𝐴 ) ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( ¬ - 𝐴 ∈ ℝ → 0 < 𝐴 ) ) |
| 9 |
|
ltlen |
⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 < 𝐴 ↔ ( 0 ≤ 𝐴 ∧ 𝐴 ≠ 0 ) ) ) |
| 10 |
1 9
|
mpan |
⊢ ( 𝐴 ∈ ℝ → ( 0 < 𝐴 ↔ ( 0 ≤ 𝐴 ∧ 𝐴 ≠ 0 ) ) ) |
| 11 |
10
|
biimprd |
⊢ ( 𝐴 ∈ ℝ → ( ( 0 ≤ 𝐴 ∧ 𝐴 ≠ 0 ) → 0 < 𝐴 ) ) |
| 12 |
11
|
expcomd |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ≠ 0 → ( 0 ≤ 𝐴 → 0 < 𝐴 ) ) ) |
| 13 |
12
|
imp |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 0 ≤ 𝐴 → 0 < 𝐴 ) ) |
| 14 |
8 13
|
jaod |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( ( ¬ - 𝐴 ∈ ℝ ∨ 0 ≤ 𝐴 ) → 0 < 𝐴 ) ) |
| 15 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℝ ) |
| 16 |
14 15
|
jctild |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( ( ¬ - 𝐴 ∈ ℝ ∨ 0 ≤ 𝐴 ) → ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) ) |
| 17 |
5 16
|
impbid2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ↔ ( ¬ - 𝐴 ∈ ℝ ∨ 0 ≤ 𝐴 ) ) ) |
| 18 |
|
lenlt |
⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 ≤ 𝐴 ↔ ¬ 𝐴 < 0 ) ) |
| 19 |
1 18
|
mpan |
⊢ ( 𝐴 ∈ ℝ → ( 0 ≤ 𝐴 ↔ ¬ 𝐴 < 0 ) ) |
| 20 |
|
lt0neg1 |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 < 0 ↔ 0 < - 𝐴 ) ) |
| 21 |
20
|
notbid |
⊢ ( 𝐴 ∈ ℝ → ( ¬ 𝐴 < 0 ↔ ¬ 0 < - 𝐴 ) ) |
| 22 |
19 21
|
bitrd |
⊢ ( 𝐴 ∈ ℝ → ( 0 ≤ 𝐴 ↔ ¬ 0 < - 𝐴 ) ) |
| 23 |
22
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 0 ≤ 𝐴 ↔ ¬ 0 < - 𝐴 ) ) |
| 24 |
23
|
orbi2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( ( ¬ - 𝐴 ∈ ℝ ∨ 0 ≤ 𝐴 ) ↔ ( ¬ - 𝐴 ∈ ℝ ∨ ¬ 0 < - 𝐴 ) ) ) |
| 25 |
17 24
|
bitrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ↔ ( ¬ - 𝐴 ∈ ℝ ∨ ¬ 0 < - 𝐴 ) ) ) |
| 26 |
|
ianor |
⊢ ( ¬ ( - 𝐴 ∈ ℝ ∧ 0 < - 𝐴 ) ↔ ( ¬ - 𝐴 ∈ ℝ ∨ ¬ 0 < - 𝐴 ) ) |
| 27 |
25 26
|
bitr4di |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ↔ ¬ ( - 𝐴 ∈ ℝ ∧ 0 < - 𝐴 ) ) ) |
| 28 |
|
elrp |
⊢ ( 𝐴 ∈ ℝ+ ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) |
| 29 |
|
elrp |
⊢ ( - 𝐴 ∈ ℝ+ ↔ ( - 𝐴 ∈ ℝ ∧ 0 < - 𝐴 ) ) |
| 30 |
29
|
notbii |
⊢ ( ¬ - 𝐴 ∈ ℝ+ ↔ ¬ ( - 𝐴 ∈ ℝ ∧ 0 < - 𝐴 ) ) |
| 31 |
27 28 30
|
3bitr4g |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 𝐴 ∈ ℝ+ ↔ ¬ - 𝐴 ∈ ℝ+ ) ) |