| Step |
Hyp |
Ref |
Expression |
| 1 |
|
efiargd.1 |
|- ( ph -> A e. CC ) |
| 2 |
|
efiargd.2 |
|- ( ph -> A =/= 0 ) |
| 3 |
|
arginv.1 |
|- ( ph -> -. -u A e. RR+ ) |
| 4 |
|
simpr |
|- ( ( ph /\ A e. RR ) -> A e. RR ) |
| 5 |
2
|
adantr |
|- ( ( ph /\ A e. RR ) -> A =/= 0 ) |
| 6 |
3
|
adantr |
|- ( ( ph /\ A e. RR ) -> -. -u A e. RR+ ) |
| 7 |
|
rpneg |
|- ( ( A e. RR /\ A =/= 0 ) -> ( A e. RR+ <-> -. -u A e. RR+ ) ) |
| 8 |
7
|
biimpar |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ -. -u A e. RR+ ) -> A e. RR+ ) |
| 9 |
4 5 6 8
|
syl21anc |
|- ( ( ph /\ A e. RR ) -> A e. RR+ ) |
| 10 |
9
|
relogcld |
|- ( ( ph /\ A e. RR ) -> ( log ` A ) e. RR ) |
| 11 |
10
|
reim0d |
|- ( ( ph /\ A e. RR ) -> ( Im ` ( log ` A ) ) = 0 ) |
| 12 |
4
|
cjred |
|- ( ( ph /\ A e. RR ) -> ( * ` A ) = A ) |
| 13 |
12
|
fveq2d |
|- ( ( ph /\ A e. RR ) -> ( log ` ( * ` A ) ) = ( log ` A ) ) |
| 14 |
13
|
fveq2d |
|- ( ( ph /\ A e. RR ) -> ( Im ` ( log ` ( * ` A ) ) ) = ( Im ` ( log ` A ) ) ) |
| 15 |
11
|
negeqd |
|- ( ( ph /\ A e. RR ) -> -u ( Im ` ( log ` A ) ) = -u 0 ) |
| 16 |
|
neg0 |
|- -u 0 = 0 |
| 17 |
15 16
|
eqtrdi |
|- ( ( ph /\ A e. RR ) -> -u ( Im ` ( log ` A ) ) = 0 ) |
| 18 |
11 14 17
|
3eqtr4d |
|- ( ( ph /\ A e. RR ) -> ( Im ` ( log ` ( * ` A ) ) ) = -u ( Im ` ( log ` A ) ) ) |
| 19 |
1
|
adantr |
|- ( ( ph /\ ( Im ` A ) = 0 ) -> A e. CC ) |
| 20 |
|
simpr |
|- ( ( ph /\ ( Im ` A ) = 0 ) -> ( Im ` A ) = 0 ) |
| 21 |
19 20
|
reim0bd |
|- ( ( ph /\ ( Im ` A ) = 0 ) -> A e. RR ) |
| 22 |
21
|
ex |
|- ( ph -> ( ( Im ` A ) = 0 -> A e. RR ) ) |
| 23 |
22
|
necon3bd |
|- ( ph -> ( -. A e. RR -> ( Im ` A ) =/= 0 ) ) |
| 24 |
23
|
imp |
|- ( ( ph /\ -. A e. RR ) -> ( Im ` A ) =/= 0 ) |
| 25 |
|
logcj |
|- ( ( A e. CC /\ ( Im ` A ) =/= 0 ) -> ( log ` ( * ` A ) ) = ( * ` ( log ` A ) ) ) |
| 26 |
1 24 25
|
syl2an2r |
|- ( ( ph /\ -. A e. RR ) -> ( log ` ( * ` A ) ) = ( * ` ( log ` A ) ) ) |
| 27 |
26
|
fveq2d |
|- ( ( ph /\ -. A e. RR ) -> ( Im ` ( log ` ( * ` A ) ) ) = ( Im ` ( * ` ( log ` A ) ) ) ) |
| 28 |
1
|
adantr |
|- ( ( ph /\ -. A e. RR ) -> A e. CC ) |
| 29 |
2
|
adantr |
|- ( ( ph /\ -. A e. RR ) -> A =/= 0 ) |
| 30 |
28 29
|
logcld |
|- ( ( ph /\ -. A e. RR ) -> ( log ` A ) e. CC ) |
| 31 |
30
|
imcjd |
|- ( ( ph /\ -. A e. RR ) -> ( Im ` ( * ` ( log ` A ) ) ) = -u ( Im ` ( log ` A ) ) ) |
| 32 |
27 31
|
eqtrd |
|- ( ( ph /\ -. A e. RR ) -> ( Im ` ( log ` ( * ` A ) ) ) = -u ( Im ` ( log ` A ) ) ) |
| 33 |
18 32
|
pm2.61dan |
|- ( ph -> ( Im ` ( log ` ( * ` A ) ) ) = -u ( Im ` ( log ` A ) ) ) |