Metamath Proof Explorer


Theorem negcon2

Description: Negative contraposition law. (Contributed by NM, 14-Nov-2004)

Ref Expression
Assertion negcon2 ABA=BB=A

Proof

Step Hyp Ref Expression
1 eqcom A=BB=A
2 negcon1 ABA=BB=A
3 1 2 bitr4id ABA=BA=B
4 eqcom A=BB=A
5 3 4 bitrdi ABA=BB=A