Step |
Hyp |
Ref |
Expression |
1 |
|
logneg |
|- ( -u A e. RR+ -> ( log ` -u -u A ) = ( ( log ` -u A ) + ( _i x. _pi ) ) ) |
2 |
1
|
fveq2d |
|- ( -u A e. RR+ -> ( Im ` ( log ` -u -u A ) ) = ( Im ` ( ( log ` -u A ) + ( _i x. _pi ) ) ) ) |
3 |
|
relogcl |
|- ( -u A e. RR+ -> ( log ` -u A ) e. RR ) |
4 |
|
pire |
|- _pi e. RR |
5 |
|
crim |
|- ( ( ( log ` -u A ) e. RR /\ _pi e. RR ) -> ( Im ` ( ( log ` -u A ) + ( _i x. _pi ) ) ) = _pi ) |
6 |
3 4 5
|
sylancl |
|- ( -u A e. RR+ -> ( Im ` ( ( log ` -u A ) + ( _i x. _pi ) ) ) = _pi ) |
7 |
2 6
|
eqtrd |
|- ( -u A e. RR+ -> ( Im ` ( log ` -u -u A ) ) = _pi ) |
8 |
|
negneg |
|- ( A e. CC -> -u -u A = A ) |
9 |
8
|
adantr |
|- ( ( A e. CC /\ A =/= 0 ) -> -u -u A = A ) |
10 |
9
|
fveq2d |
|- ( ( A e. CC /\ A =/= 0 ) -> ( log ` -u -u A ) = ( log ` A ) ) |
11 |
10
|
fveqeq2d |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( Im ` ( log ` -u -u A ) ) = _pi <-> ( Im ` ( log ` A ) ) = _pi ) ) |
12 |
7 11
|
syl5ib |
|- ( ( A e. CC /\ A =/= 0 ) -> ( -u A e. RR+ -> ( Im ` ( log ` A ) ) = _pi ) ) |
13 |
|
logcl |
|- ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) e. CC ) |
14 |
13
|
replimd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) = ( ( Re ` ( log ` A ) ) + ( _i x. ( Im ` ( log ` A ) ) ) ) ) |
15 |
14
|
fveq2d |
|- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( log ` A ) ) = ( exp ` ( ( Re ` ( log ` A ) ) + ( _i x. ( Im ` ( log ` A ) ) ) ) ) ) |
16 |
|
eflog |
|- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( log ` A ) ) = A ) |
17 |
13
|
recld |
|- ( ( A e. CC /\ A =/= 0 ) -> ( Re ` ( log ` A ) ) e. RR ) |
18 |
17
|
recnd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( Re ` ( log ` A ) ) e. CC ) |
19 |
|
ax-icn |
|- _i e. CC |
20 |
13
|
imcld |
|- ( ( A e. CC /\ A =/= 0 ) -> ( Im ` ( log ` A ) ) e. RR ) |
21 |
20
|
recnd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( Im ` ( log ` A ) ) e. CC ) |
22 |
|
mulcl |
|- ( ( _i e. CC /\ ( Im ` ( log ` A ) ) e. CC ) -> ( _i x. ( Im ` ( log ` A ) ) ) e. CC ) |
23 |
19 21 22
|
sylancr |
|- ( ( A e. CC /\ A =/= 0 ) -> ( _i x. ( Im ` ( log ` A ) ) ) e. CC ) |
24 |
|
efadd |
|- ( ( ( Re ` ( log ` A ) ) e. CC /\ ( _i x. ( Im ` ( log ` A ) ) ) e. CC ) -> ( exp ` ( ( Re ` ( log ` A ) ) + ( _i x. ( Im ` ( log ` A ) ) ) ) ) = ( ( exp ` ( Re ` ( log ` A ) ) ) x. ( exp ` ( _i x. ( Im ` ( log ` A ) ) ) ) ) ) |
25 |
18 23 24
|
syl2anc |
|- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( ( Re ` ( log ` A ) ) + ( _i x. ( Im ` ( log ` A ) ) ) ) ) = ( ( exp ` ( Re ` ( log ` A ) ) ) x. ( exp ` ( _i x. ( Im ` ( log ` A ) ) ) ) ) ) |
26 |
15 16 25
|
3eqtr3d |
|- ( ( A e. CC /\ A =/= 0 ) -> A = ( ( exp ` ( Re ` ( log ` A ) ) ) x. ( exp ` ( _i x. ( Im ` ( log ` A ) ) ) ) ) ) |
27 |
|
oveq2 |
|- ( ( Im ` ( log ` A ) ) = _pi -> ( _i x. ( Im ` ( log ` A ) ) ) = ( _i x. _pi ) ) |
28 |
27
|
fveq2d |
|- ( ( Im ` ( log ` A ) ) = _pi -> ( exp ` ( _i x. ( Im ` ( log ` A ) ) ) ) = ( exp ` ( _i x. _pi ) ) ) |
29 |
|
efipi |
|- ( exp ` ( _i x. _pi ) ) = -u 1 |
30 |
28 29
|
eqtrdi |
|- ( ( Im ` ( log ` A ) ) = _pi -> ( exp ` ( _i x. ( Im ` ( log ` A ) ) ) ) = -u 1 ) |
31 |
30
|
oveq2d |
|- ( ( Im ` ( log ` A ) ) = _pi -> ( ( exp ` ( Re ` ( log ` A ) ) ) x. ( exp ` ( _i x. ( Im ` ( log ` A ) ) ) ) ) = ( ( exp ` ( Re ` ( log ` A ) ) ) x. -u 1 ) ) |
32 |
31
|
eqeq2d |
|- ( ( Im ` ( log ` A ) ) = _pi -> ( A = ( ( exp ` ( Re ` ( log ` A ) ) ) x. ( exp ` ( _i x. ( Im ` ( log ` A ) ) ) ) ) <-> A = ( ( exp ` ( Re ` ( log ` A ) ) ) x. -u 1 ) ) ) |
33 |
26 32
|
syl5ibcom |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( Im ` ( log ` A ) ) = _pi -> A = ( ( exp ` ( Re ` ( log ` A ) ) ) x. -u 1 ) ) ) |
34 |
17
|
rpefcld |
|- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( Re ` ( log ` A ) ) ) e. RR+ ) |
35 |
34
|
rpcnd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( Re ` ( log ` A ) ) ) e. CC ) |
36 |
|
neg1cn |
|- -u 1 e. CC |
37 |
|
mulcom |
|- ( ( ( exp ` ( Re ` ( log ` A ) ) ) e. CC /\ -u 1 e. CC ) -> ( ( exp ` ( Re ` ( log ` A ) ) ) x. -u 1 ) = ( -u 1 x. ( exp ` ( Re ` ( log ` A ) ) ) ) ) |
38 |
35 36 37
|
sylancl |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( exp ` ( Re ` ( log ` A ) ) ) x. -u 1 ) = ( -u 1 x. ( exp ` ( Re ` ( log ` A ) ) ) ) ) |
39 |
35
|
mulm1d |
|- ( ( A e. CC /\ A =/= 0 ) -> ( -u 1 x. ( exp ` ( Re ` ( log ` A ) ) ) ) = -u ( exp ` ( Re ` ( log ` A ) ) ) ) |
40 |
38 39
|
eqtrd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( exp ` ( Re ` ( log ` A ) ) ) x. -u 1 ) = -u ( exp ` ( Re ` ( log ` A ) ) ) ) |
41 |
40
|
negeqd |
|- ( ( A e. CC /\ A =/= 0 ) -> -u ( ( exp ` ( Re ` ( log ` A ) ) ) x. -u 1 ) = -u -u ( exp ` ( Re ` ( log ` A ) ) ) ) |
42 |
35
|
negnegd |
|- ( ( A e. CC /\ A =/= 0 ) -> -u -u ( exp ` ( Re ` ( log ` A ) ) ) = ( exp ` ( Re ` ( log ` A ) ) ) ) |
43 |
41 42
|
eqtrd |
|- ( ( A e. CC /\ A =/= 0 ) -> -u ( ( exp ` ( Re ` ( log ` A ) ) ) x. -u 1 ) = ( exp ` ( Re ` ( log ` A ) ) ) ) |
44 |
43 34
|
eqeltrd |
|- ( ( A e. CC /\ A =/= 0 ) -> -u ( ( exp ` ( Re ` ( log ` A ) ) ) x. -u 1 ) e. RR+ ) |
45 |
|
negeq |
|- ( A = ( ( exp ` ( Re ` ( log ` A ) ) ) x. -u 1 ) -> -u A = -u ( ( exp ` ( Re ` ( log ` A ) ) ) x. -u 1 ) ) |
46 |
45
|
eleq1d |
|- ( A = ( ( exp ` ( Re ` ( log ` A ) ) ) x. -u 1 ) -> ( -u A e. RR+ <-> -u ( ( exp ` ( Re ` ( log ` A ) ) ) x. -u 1 ) e. RR+ ) ) |
47 |
44 46
|
syl5ibrcom |
|- ( ( A e. CC /\ A =/= 0 ) -> ( A = ( ( exp ` ( Re ` ( log ` A ) ) ) x. -u 1 ) -> -u A e. RR+ ) ) |
48 |
33 47
|
syld |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( Im ` ( log ` A ) ) = _pi -> -u A e. RR+ ) ) |
49 |
12 48
|
impbid |
|- ( ( A e. CC /\ A =/= 0 ) -> ( -u A e. RR+ <-> ( Im ` ( log ` A ) ) = _pi ) ) |