Metamath Proof Explorer


Theorem efiargd

Description: The exponential of the "arg" function Im o. log , deduction version. (Contributed by Thierry Arnoux, 5-Nov-2025)

Ref Expression
Hypotheses efiargd.1 ( 𝜑𝐴 ∈ ℂ )
efiargd.2 ( 𝜑𝐴 ≠ 0 )
Assertion efiargd ( 𝜑 → ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( 𝐴 / ( abs ‘ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 efiargd.1 ( 𝜑𝐴 ∈ ℂ )
2 efiargd.2 ( 𝜑𝐴 ≠ 0 )
3 efiarg ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( 𝐴 / ( abs ‘ 𝐴 ) ) )
4 1 2 3 syl2anc ( 𝜑 → ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( 𝐴 / ( abs ‘ 𝐴 ) ) )