Metamath Proof Explorer


Theorem mulsubd

Description: Product of two differences. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses mulm1d.1
|- ( ph -> A e. CC )
mulnegd.2
|- ( ph -> B e. CC )
subdid.3
|- ( ph -> C e. CC )
muladdd.4
|- ( ph -> D e. CC )
Assertion mulsubd
|- ( ph -> ( ( A - B ) x. ( C - D ) ) = ( ( ( A x. C ) + ( D x. B ) ) - ( ( A x. D ) + ( C x. B ) ) ) )

Proof

Step Hyp Ref Expression
1 mulm1d.1
 |-  ( ph -> A e. CC )
2 mulnegd.2
 |-  ( ph -> B e. CC )
3 subdid.3
 |-  ( ph -> C e. CC )
4 muladdd.4
 |-  ( ph -> D e. CC )
5 mulsub
 |-  ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A - B ) x. ( C - D ) ) = ( ( ( A x. C ) + ( D x. B ) ) - ( ( A x. D ) + ( C x. B ) ) ) )
6 1 2 3 4 5 syl22anc
 |-  ( ph -> ( ( A - B ) x. ( C - D ) ) = ( ( ( A x. C ) + ( D x. B ) ) - ( ( A x. D ) + ( C x. B ) ) ) )