Description: Product of two differences. (Contributed by Mario Carneiro, 27-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mulm1d.1 | |- ( ph -> A e. CC ) |
|
mulnegd.2 | |- ( ph -> B e. CC ) |
||
subdid.3 | |- ( ph -> C e. CC ) |
||
muladdd.4 | |- ( ph -> D e. CC ) |
||
Assertion | mulsubd | |- ( ph -> ( ( A - B ) x. ( C - D ) ) = ( ( ( A x. C ) + ( D x. B ) ) - ( ( A x. D ) + ( C x. B ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulm1d.1 | |- ( ph -> A e. CC ) |
|
2 | mulnegd.2 | |- ( ph -> B e. CC ) |
|
3 | subdid.3 | |- ( ph -> C e. CC ) |
|
4 | muladdd.4 | |- ( ph -> D e. CC ) |
|
5 | mulsub | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A - B ) x. ( C - D ) ) = ( ( ( A x. C ) + ( D x. B ) ) - ( ( A x. D ) + ( C x. B ) ) ) ) |
|
6 | 1 2 3 4 5 | syl22anc | |- ( ph -> ( ( A - B ) x. ( C - D ) ) = ( ( ( A x. C ) + ( D x. B ) ) - ( ( A x. D ) + ( C x. B ) ) ) ) |