Metamath Proof Explorer


Theorem subrgmcld

Description: A subring is closed under multiplication. (Contributed by Thierry Arnoux, 6-Jul-2025)

Ref Expression
Hypotheses subrgmcld.1 · = ( .r𝑅 )
subrgmcld.2 ( 𝜑𝐴 ∈ ( SubRing ‘ 𝑅 ) )
subrgmcld.3 ( 𝜑𝑋𝐴 )
subrgmcld.4 ( 𝜑𝑌𝐴 )
Assertion subrgmcld ( 𝜑 → ( 𝑋 · 𝑌 ) ∈ 𝐴 )

Proof

Step Hyp Ref Expression
1 subrgmcld.1 · = ( .r𝑅 )
2 subrgmcld.2 ( 𝜑𝐴 ∈ ( SubRing ‘ 𝑅 ) )
3 subrgmcld.3 ( 𝜑𝑋𝐴 )
4 subrgmcld.4 ( 𝜑𝑌𝐴 )
5 1 subrgmcl ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋𝐴𝑌𝐴 ) → ( 𝑋 · 𝑌 ) ∈ 𝐴 )
6 2 3 4 5 syl3anc ( 𝜑 → ( 𝑋 · 𝑌 ) ∈ 𝐴 )