Description: A subring is closed under multiplication. (Contributed by Thierry Arnoux, 6-Jul-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | subrgmcld.1 | |- .x. = ( .r ` R ) |
|
subrgmcld.2 | |- ( ph -> A e. ( SubRing ` R ) ) |
||
subrgmcld.3 | |- ( ph -> X e. A ) |
||
subrgmcld.4 | |- ( ph -> Y e. A ) |
||
Assertion | subrgmcld | |- ( ph -> ( X .x. Y ) e. A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgmcld.1 | |- .x. = ( .r ` R ) |
|
2 | subrgmcld.2 | |- ( ph -> A e. ( SubRing ` R ) ) |
|
3 | subrgmcld.3 | |- ( ph -> X e. A ) |
|
4 | subrgmcld.4 | |- ( ph -> Y e. A ) |
|
5 | 1 | subrgmcl | |- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. A ) -> ( X .x. Y ) e. A ) |
6 | 2 3 4 5 | syl3anc | |- ( ph -> ( X .x. Y ) e. A ) |