Metamath Proof Explorer


Theorem subrgmcld

Description: A subring is closed under multiplication. (Contributed by Thierry Arnoux, 6-Jul-2025)

Ref Expression
Hypotheses subrgmcld.1
|- .x. = ( .r ` R )
subrgmcld.2
|- ( ph -> A e. ( SubRing ` R ) )
subrgmcld.3
|- ( ph -> X e. A )
subrgmcld.4
|- ( ph -> Y e. A )
Assertion subrgmcld
|- ( ph -> ( X .x. Y ) e. A )

Proof

Step Hyp Ref Expression
1 subrgmcld.1
 |-  .x. = ( .r ` R )
2 subrgmcld.2
 |-  ( ph -> A e. ( SubRing ` R ) )
3 subrgmcld.3
 |-  ( ph -> X e. A )
4 subrgmcld.4
 |-  ( ph -> Y e. A )
5 1 subrgmcl
 |-  ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. A ) -> ( X .x. Y ) e. A )
6 2 3 4 5 syl3anc
 |-  ( ph -> ( X .x. Y ) e. A )