Metamath Proof Explorer


Theorem subrgmcld

Description: A subring is closed under multiplication. (Contributed by Thierry Arnoux, 6-Jul-2025)

Ref Expression
Hypotheses subrgmcld.1 · ˙ = R
subrgmcld.2 φ A SubRing R
subrgmcld.3 φ X A
subrgmcld.4 φ Y A
Assertion subrgmcld φ X · ˙ Y A

Proof

Step Hyp Ref Expression
1 subrgmcld.1 · ˙ = R
2 subrgmcld.2 φ A SubRing R
3 subrgmcld.3 φ X A
4 subrgmcld.4 φ Y A
5 1 subrgmcl A SubRing R X A Y A X · ˙ Y A
6 2 3 4 5 syl3anc φ X · ˙ Y A