| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rtelextdg2.1 | ⊢ 𝐾  =  ( 𝐸  ↾s  𝐹 ) | 
						
							| 2 |  | rtelextdg2.2 | ⊢ 𝐿  =  ( 𝐸  ↾s  ( 𝐸  fldGen  ( 𝐹  ∪  { 𝑋 } ) ) ) | 
						
							| 3 |  | rtelextdg2.3 | ⊢  0   =  ( 0g ‘ 𝐸 ) | 
						
							| 4 |  | rtelextdg2.4 | ⊢ 𝑃  =  ( Poly1 ‘ 𝐾 ) | 
						
							| 5 |  | rtelextdg2.5 | ⊢ 𝑉  =  ( Base ‘ 𝐸 ) | 
						
							| 6 |  | rtelextdg2.6 | ⊢  ·   =  ( .r ‘ 𝐸 ) | 
						
							| 7 |  | rtelextdg2.7 | ⊢  +   =  ( +g ‘ 𝐸 ) | 
						
							| 8 |  | rtelextdg2.8 | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝐸 ) ) | 
						
							| 9 |  | rtelextdg2.9 | ⊢ ( 𝜑  →  𝐸  ∈  Field ) | 
						
							| 10 |  | rtelextdg2.10 | ⊢ ( 𝜑  →  𝐹  ∈  ( SubDRing ‘ 𝐸 ) ) | 
						
							| 11 |  | rtelextdg2.11 | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 12 |  | rtelextdg2.12 | ⊢ ( 𝜑  →  𝐴  ∈  𝐹 ) | 
						
							| 13 |  | rtelextdg2.13 | ⊢ ( 𝜑  →  𝐵  ∈  𝐹 ) | 
						
							| 14 |  | rtelextdg2.14 | ⊢ ( 𝜑  →  ( ( 2  ↑  𝑋 )  +  ( ( 𝐴  ·  𝑋 )  +  𝐵 ) )  =   0  ) | 
						
							| 15 | 9 | flddrngd | ⊢ ( 𝜑  →  𝐸  ∈  DivRing ) | 
						
							| 16 | 5 | sdrgss | ⊢ ( 𝐹  ∈  ( SubDRing ‘ 𝐸 )  →  𝐹  ⊆  𝑉 ) | 
						
							| 17 | 10 16 | syl | ⊢ ( 𝜑  →  𝐹  ⊆  𝑉 ) | 
						
							| 18 | 11 | snssd | ⊢ ( 𝜑  →  { 𝑋 }  ⊆  𝑉 ) | 
						
							| 19 | 17 18 | unssd | ⊢ ( 𝜑  →  ( 𝐹  ∪  { 𝑋 } )  ⊆  𝑉 ) | 
						
							| 20 | 5 15 19 | fldgenssid | ⊢ ( 𝜑  →  ( 𝐹  ∪  { 𝑋 } )  ⊆  ( 𝐸  fldGen  ( 𝐹  ∪  { 𝑋 } ) ) ) | 
						
							| 21 |  | ssun2 | ⊢ { 𝑋 }  ⊆  ( 𝐹  ∪  { 𝑋 } ) | 
						
							| 22 |  | snidg | ⊢ ( 𝑋  ∈  𝑉  →  𝑋  ∈  { 𝑋 } ) | 
						
							| 23 | 11 22 | syl | ⊢ ( 𝜑  →  𝑋  ∈  { 𝑋 } ) | 
						
							| 24 | 21 23 | sselid | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝐹  ∪  { 𝑋 } ) ) | 
						
							| 25 | 20 24 | sseldd | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝐸  fldGen  ( 𝐹  ∪  { 𝑋 } ) ) ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐿 [:] 𝐾 )  =  1 )  →  𝑋  ∈  ( 𝐸  fldGen  ( 𝐹  ∪  { 𝑋 } ) ) ) | 
						
							| 27 | 5 1 2 9 10 18 | fldgenfldext | ⊢ ( 𝜑  →  𝐿 /FldExt 𝐾 ) | 
						
							| 28 |  | extdg1id | ⊢ ( ( 𝐿 /FldExt 𝐾  ∧  ( 𝐿 [:] 𝐾 )  =  1 )  →  𝐿  =  𝐾 ) | 
						
							| 29 | 27 28 | sylan | ⊢ ( ( 𝜑  ∧  ( 𝐿 [:] 𝐾 )  =  1 )  →  𝐿  =  𝐾 ) | 
						
							| 30 | 29 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝐿 [:] 𝐾 )  =  1 )  →  ( Base ‘ 𝐿 )  =  ( Base ‘ 𝐾 ) ) | 
						
							| 31 | 5 15 19 | fldgenssv | ⊢ ( 𝜑  →  ( 𝐸  fldGen  ( 𝐹  ∪  { 𝑋 } ) )  ⊆  𝑉 ) | 
						
							| 32 | 2 5 | ressbas2 | ⊢ ( ( 𝐸  fldGen  ( 𝐹  ∪  { 𝑋 } ) )  ⊆  𝑉  →  ( 𝐸  fldGen  ( 𝐹  ∪  { 𝑋 } ) )  =  ( Base ‘ 𝐿 ) ) | 
						
							| 33 | 31 32 | syl | ⊢ ( 𝜑  →  ( 𝐸  fldGen  ( 𝐹  ∪  { 𝑋 } ) )  =  ( Base ‘ 𝐿 ) ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐿 [:] 𝐾 )  =  1 )  →  ( 𝐸  fldGen  ( 𝐹  ∪  { 𝑋 } ) )  =  ( Base ‘ 𝐿 ) ) | 
						
							| 35 | 1 5 | ressbas2 | ⊢ ( 𝐹  ⊆  𝑉  →  𝐹  =  ( Base ‘ 𝐾 ) ) | 
						
							| 36 | 17 35 | syl | ⊢ ( 𝜑  →  𝐹  =  ( Base ‘ 𝐾 ) ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐿 [:] 𝐾 )  =  1 )  →  𝐹  =  ( Base ‘ 𝐾 ) ) | 
						
							| 38 | 30 34 37 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝐿 [:] 𝐾 )  =  1 )  →  ( 𝐸  fldGen  ( 𝐹  ∪  { 𝑋 } ) )  =  𝐹 ) | 
						
							| 39 | 26 38 | eleqtrd | ⊢ ( ( 𝜑  ∧  ( 𝐿 [:] 𝐾 )  =  1 )  →  𝑋  ∈  𝐹 ) | 
						
							| 40 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 𝐿 [:] 𝐾 )  =  2 )  →  ( 𝐿 [:] 𝐾 )  =  2 ) | 
						
							| 41 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 42 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 43 | 42 | a1i | ⊢ ( 𝜑  →  2  ∈  ℤ ) | 
						
							| 44 |  | extdgcl | ⊢ ( 𝐿 /FldExt 𝐾  →  ( 𝐿 [:] 𝐾 )  ∈  ℕ0* ) | 
						
							| 45 | 27 44 | syl | ⊢ ( 𝜑  →  ( 𝐿 [:] 𝐾 )  ∈  ℕ0* ) | 
						
							| 46 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 47 | 46 | a1i | ⊢ ( 𝜑  →  2  ∈  ℕ0 ) | 
						
							| 48 |  | eqid | ⊢ ( var1 ‘ 𝐾 )  =  ( var1 ‘ 𝐾 ) | 
						
							| 49 |  | eqid | ⊢ ( +g ‘ 𝑃 )  =  ( +g ‘ 𝑃 ) | 
						
							| 50 |  | eqid | ⊢ ( .r ‘ 𝑃 )  =  ( .r ‘ 𝑃 ) | 
						
							| 51 |  | eqid | ⊢ ( .g ‘ ( mulGrp ‘ 𝑃 ) )  =  ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 52 |  | eqid | ⊢ ( algSc ‘ 𝑃 )  =  ( algSc ‘ 𝑃 ) | 
						
							| 53 |  | eqid | ⊢ ( ( 2 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝐾 ) ) ( +g ‘ 𝑃 ) ( ( ( ( algSc ‘ 𝑃 ) ‘ 𝐴 ) ( .r ‘ 𝑃 ) ( var1 ‘ 𝐾 ) ) ( +g ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ 𝐵 ) ) )  =  ( ( 2 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝐾 ) ) ( +g ‘ 𝑃 ) ( ( ( ( algSc ‘ 𝑃 ) ‘ 𝐴 ) ( .r ‘ 𝑃 ) ( var1 ‘ 𝐾 ) ) ( +g ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ 𝐵 ) ) ) | 
						
							| 54 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 48 49 50 51 52 53 | rtelextdg2lem | ⊢ ( 𝜑  →  ( 𝐿 [:] 𝐾 )  ≤  2 ) | 
						
							| 55 |  | xnn0lenn0nn0 | ⊢ ( ( ( 𝐿 [:] 𝐾 )  ∈  ℕ0*  ∧  2  ∈  ℕ0  ∧  ( 𝐿 [:] 𝐾 )  ≤  2 )  →  ( 𝐿 [:] 𝐾 )  ∈  ℕ0 ) | 
						
							| 56 | 45 47 54 55 | syl3anc | ⊢ ( 𝜑  →  ( 𝐿 [:] 𝐾 )  ∈  ℕ0 ) | 
						
							| 57 | 56 | nn0zd | ⊢ ( 𝜑  →  ( 𝐿 [:] 𝐾 )  ∈  ℤ ) | 
						
							| 58 |  | extdggt0 | ⊢ ( 𝐿 /FldExt 𝐾  →  0  <  ( 𝐿 [:] 𝐾 ) ) | 
						
							| 59 | 27 58 | syl | ⊢ ( 𝜑  →  0  <  ( 𝐿 [:] 𝐾 ) ) | 
						
							| 60 |  | zgt0ge1 | ⊢ ( ( 𝐿 [:] 𝐾 )  ∈  ℤ  →  ( 0  <  ( 𝐿 [:] 𝐾 )  ↔  1  ≤  ( 𝐿 [:] 𝐾 ) ) ) | 
						
							| 61 | 60 | biimpa | ⊢ ( ( ( 𝐿 [:] 𝐾 )  ∈  ℤ  ∧  0  <  ( 𝐿 [:] 𝐾 ) )  →  1  ≤  ( 𝐿 [:] 𝐾 ) ) | 
						
							| 62 | 57 59 61 | syl2anc | ⊢ ( 𝜑  →  1  ≤  ( 𝐿 [:] 𝐾 ) ) | 
						
							| 63 | 41 43 57 62 54 | elfzd | ⊢ ( 𝜑  →  ( 𝐿 [:] 𝐾 )  ∈  ( 1 ... 2 ) ) | 
						
							| 64 |  | fz12pr | ⊢ ( 1 ... 2 )  =  { 1 ,  2 } | 
						
							| 65 | 63 64 | eleqtrdi | ⊢ ( 𝜑  →  ( 𝐿 [:] 𝐾 )  ∈  { 1 ,  2 } ) | 
						
							| 66 |  | elpri | ⊢ ( ( 𝐿 [:] 𝐾 )  ∈  { 1 ,  2 }  →  ( ( 𝐿 [:] 𝐾 )  =  1  ∨  ( 𝐿 [:] 𝐾 )  =  2 ) ) | 
						
							| 67 | 65 66 | syl | ⊢ ( 𝜑  →  ( ( 𝐿 [:] 𝐾 )  =  1  ∨  ( 𝐿 [:] 𝐾 )  =  2 ) ) | 
						
							| 68 | 39 40 67 | orim12da | ⊢ ( 𝜑  →  ( 𝑋  ∈  𝐹  ∨  ( 𝐿 [:] 𝐾 )  =  2 ) ) |