Step |
Hyp |
Ref |
Expression |
1 |
|
rtelextdg2.1 |
⊢ 𝐾 = ( 𝐸 ↾s 𝐹 ) |
2 |
|
rtelextdg2.2 |
⊢ 𝐿 = ( 𝐸 ↾s ( 𝐸 fldGen ( 𝐹 ∪ { 𝑋 } ) ) ) |
3 |
|
rtelextdg2.3 |
⊢ 0 = ( 0g ‘ 𝐸 ) |
4 |
|
rtelextdg2.4 |
⊢ 𝑃 = ( Poly1 ‘ 𝐾 ) |
5 |
|
rtelextdg2.5 |
⊢ 𝑉 = ( Base ‘ 𝐸 ) |
6 |
|
rtelextdg2.6 |
⊢ · = ( .r ‘ 𝐸 ) |
7 |
|
rtelextdg2.7 |
⊢ + = ( +g ‘ 𝐸 ) |
8 |
|
rtelextdg2.8 |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝐸 ) ) |
9 |
|
rtelextdg2.9 |
⊢ ( 𝜑 → 𝐸 ∈ Field ) |
10 |
|
rtelextdg2.10 |
⊢ ( 𝜑 → 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) |
11 |
|
rtelextdg2.11 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
12 |
|
rtelextdg2.12 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐹 ) |
13 |
|
rtelextdg2.13 |
⊢ ( 𝜑 → 𝐵 ∈ 𝐹 ) |
14 |
|
rtelextdg2.14 |
⊢ ( 𝜑 → ( ( 2 ↑ 𝑋 ) + ( ( 𝐴 · 𝑋 ) + 𝐵 ) ) = 0 ) |
15 |
9
|
flddrngd |
⊢ ( 𝜑 → 𝐸 ∈ DivRing ) |
16 |
5
|
sdrgss |
⊢ ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) → 𝐹 ⊆ 𝑉 ) |
17 |
10 16
|
syl |
⊢ ( 𝜑 → 𝐹 ⊆ 𝑉 ) |
18 |
11
|
snssd |
⊢ ( 𝜑 → { 𝑋 } ⊆ 𝑉 ) |
19 |
17 18
|
unssd |
⊢ ( 𝜑 → ( 𝐹 ∪ { 𝑋 } ) ⊆ 𝑉 ) |
20 |
5 15 19
|
fldgenssid |
⊢ ( 𝜑 → ( 𝐹 ∪ { 𝑋 } ) ⊆ ( 𝐸 fldGen ( 𝐹 ∪ { 𝑋 } ) ) ) |
21 |
|
ssun2 |
⊢ { 𝑋 } ⊆ ( 𝐹 ∪ { 𝑋 } ) |
22 |
|
snidg |
⊢ ( 𝑋 ∈ 𝑉 → 𝑋 ∈ { 𝑋 } ) |
23 |
11 22
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ { 𝑋 } ) |
24 |
21 23
|
sselid |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐹 ∪ { 𝑋 } ) ) |
25 |
20 24
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐸 fldGen ( 𝐹 ∪ { 𝑋 } ) ) ) |
26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐿 [:] 𝐾 ) = 1 ) → 𝑋 ∈ ( 𝐸 fldGen ( 𝐹 ∪ { 𝑋 } ) ) ) |
27 |
5 1 2 9 10 18
|
fldgenfldext |
⊢ ( 𝜑 → 𝐿 /FldExt 𝐾 ) |
28 |
|
extdg1id |
⊢ ( ( 𝐿 /FldExt 𝐾 ∧ ( 𝐿 [:] 𝐾 ) = 1 ) → 𝐿 = 𝐾 ) |
29 |
27 28
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝐿 [:] 𝐾 ) = 1 ) → 𝐿 = 𝐾 ) |
30 |
29
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝐿 [:] 𝐾 ) = 1 ) → ( Base ‘ 𝐿 ) = ( Base ‘ 𝐾 ) ) |
31 |
5 15 19
|
fldgenssv |
⊢ ( 𝜑 → ( 𝐸 fldGen ( 𝐹 ∪ { 𝑋 } ) ) ⊆ 𝑉 ) |
32 |
2 5
|
ressbas2 |
⊢ ( ( 𝐸 fldGen ( 𝐹 ∪ { 𝑋 } ) ) ⊆ 𝑉 → ( 𝐸 fldGen ( 𝐹 ∪ { 𝑋 } ) ) = ( Base ‘ 𝐿 ) ) |
33 |
31 32
|
syl |
⊢ ( 𝜑 → ( 𝐸 fldGen ( 𝐹 ∪ { 𝑋 } ) ) = ( Base ‘ 𝐿 ) ) |
34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐿 [:] 𝐾 ) = 1 ) → ( 𝐸 fldGen ( 𝐹 ∪ { 𝑋 } ) ) = ( Base ‘ 𝐿 ) ) |
35 |
1 5
|
ressbas2 |
⊢ ( 𝐹 ⊆ 𝑉 → 𝐹 = ( Base ‘ 𝐾 ) ) |
36 |
17 35
|
syl |
⊢ ( 𝜑 → 𝐹 = ( Base ‘ 𝐾 ) ) |
37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐿 [:] 𝐾 ) = 1 ) → 𝐹 = ( Base ‘ 𝐾 ) ) |
38 |
30 34 37
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝐿 [:] 𝐾 ) = 1 ) → ( 𝐸 fldGen ( 𝐹 ∪ { 𝑋 } ) ) = 𝐹 ) |
39 |
26 38
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐿 [:] 𝐾 ) = 1 ) → 𝑋 ∈ 𝐹 ) |
40 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐿 [:] 𝐾 ) = 2 ) → ( 𝐿 [:] 𝐾 ) = 2 ) |
41 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
42 |
|
2z |
⊢ 2 ∈ ℤ |
43 |
42
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℤ ) |
44 |
|
extdgcl |
⊢ ( 𝐿 /FldExt 𝐾 → ( 𝐿 [:] 𝐾 ) ∈ ℕ0* ) |
45 |
27 44
|
syl |
⊢ ( 𝜑 → ( 𝐿 [:] 𝐾 ) ∈ ℕ0* ) |
46 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
47 |
46
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℕ0 ) |
48 |
|
eqid |
⊢ ( var1 ‘ 𝐾 ) = ( var1 ‘ 𝐾 ) |
49 |
|
eqid |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) |
50 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
51 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝑃 ) ) = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
52 |
|
eqid |
⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 ) |
53 |
|
eqid |
⊢ ( ( 2 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝐾 ) ) ( +g ‘ 𝑃 ) ( ( ( ( algSc ‘ 𝑃 ) ‘ 𝐴 ) ( .r ‘ 𝑃 ) ( var1 ‘ 𝐾 ) ) ( +g ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ 𝐵 ) ) ) = ( ( 2 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝐾 ) ) ( +g ‘ 𝑃 ) ( ( ( ( algSc ‘ 𝑃 ) ‘ 𝐴 ) ( .r ‘ 𝑃 ) ( var1 ‘ 𝐾 ) ) ( +g ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ 𝐵 ) ) ) |
54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 48 49 50 51 52 53
|
rtelextdg2lem |
⊢ ( 𝜑 → ( 𝐿 [:] 𝐾 ) ≤ 2 ) |
55 |
|
xnn0lenn0nn0 |
⊢ ( ( ( 𝐿 [:] 𝐾 ) ∈ ℕ0* ∧ 2 ∈ ℕ0 ∧ ( 𝐿 [:] 𝐾 ) ≤ 2 ) → ( 𝐿 [:] 𝐾 ) ∈ ℕ0 ) |
56 |
45 47 54 55
|
syl3anc |
⊢ ( 𝜑 → ( 𝐿 [:] 𝐾 ) ∈ ℕ0 ) |
57 |
56
|
nn0zd |
⊢ ( 𝜑 → ( 𝐿 [:] 𝐾 ) ∈ ℤ ) |
58 |
|
extdggt0 |
⊢ ( 𝐿 /FldExt 𝐾 → 0 < ( 𝐿 [:] 𝐾 ) ) |
59 |
27 58
|
syl |
⊢ ( 𝜑 → 0 < ( 𝐿 [:] 𝐾 ) ) |
60 |
|
zgt0ge1 |
⊢ ( ( 𝐿 [:] 𝐾 ) ∈ ℤ → ( 0 < ( 𝐿 [:] 𝐾 ) ↔ 1 ≤ ( 𝐿 [:] 𝐾 ) ) ) |
61 |
60
|
biimpa |
⊢ ( ( ( 𝐿 [:] 𝐾 ) ∈ ℤ ∧ 0 < ( 𝐿 [:] 𝐾 ) ) → 1 ≤ ( 𝐿 [:] 𝐾 ) ) |
62 |
57 59 61
|
syl2anc |
⊢ ( 𝜑 → 1 ≤ ( 𝐿 [:] 𝐾 ) ) |
63 |
41 43 57 62 54
|
elfzd |
⊢ ( 𝜑 → ( 𝐿 [:] 𝐾 ) ∈ ( 1 ... 2 ) ) |
64 |
|
fz12pr |
⊢ ( 1 ... 2 ) = { 1 , 2 } |
65 |
63 64
|
eleqtrdi |
⊢ ( 𝜑 → ( 𝐿 [:] 𝐾 ) ∈ { 1 , 2 } ) |
66 |
|
elpri |
⊢ ( ( 𝐿 [:] 𝐾 ) ∈ { 1 , 2 } → ( ( 𝐿 [:] 𝐾 ) = 1 ∨ ( 𝐿 [:] 𝐾 ) = 2 ) ) |
67 |
65 66
|
syl |
⊢ ( 𝜑 → ( ( 𝐿 [:] 𝐾 ) = 1 ∨ ( 𝐿 [:] 𝐾 ) = 2 ) ) |
68 |
39 40 67
|
orim12da |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐹 ∨ ( 𝐿 [:] 𝐾 ) = 2 ) ) |