Metamath Proof Explorer


Theorem extdg1id

Description: If the degree of the extension E /FldExt F is 1 , then E and F are identical. (Contributed by Thierry Arnoux, 6-Aug-2023)

Ref Expression
Assertion extdg1id ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) → 𝐸 = 𝐹 )

Proof

Step Hyp Ref Expression
1 fldextress ( 𝐸 /FldExt 𝐹𝐹 = ( 𝐸s ( Base ‘ 𝐹 ) ) )
2 1 adantr ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) → 𝐹 = ( 𝐸s ( Base ‘ 𝐹 ) ) )
3 fldextsralvec ( 𝐸 /FldExt 𝐹 → ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ∈ LVec )
4 3 adantr ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) → ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ∈ LVec )
5 eqid ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) = ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) )
6 5 lbsex ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ∈ LVec → ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ≠ ∅ )
7 4 6 syl ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) → ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ≠ ∅ )
8 n0 ( ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ≠ ∅ ↔ ∃ 𝑏 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) )
9 7 8 sylib ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) → ∃ 𝑏 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) )
10 simpr ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) → 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) )
11 5 dimval ( ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ∈ LVec ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) → ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) = ( ♯ ‘ 𝑏 ) )
12 4 11 sylan ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) → ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) = ( ♯ ‘ 𝑏 ) )
13 extdgval ( 𝐸 /FldExt 𝐹 → ( 𝐸 [:] 𝐹 ) = ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) )
14 13 adantr ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) → ( 𝐸 [:] 𝐹 ) = ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) )
15 simpr ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) → ( 𝐸 [:] 𝐹 ) = 1 )
16 14 15 eqtr3d ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) → ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) = 1 )
17 16 adantr ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) → ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) = 1 )
18 12 17 eqtr3d ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) → ( ♯ ‘ 𝑏 ) = 1 )
19 hash1snb ( 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) → ( ( ♯ ‘ 𝑏 ) = 1 ↔ ∃ 𝑥 𝑏 = { 𝑥 } ) )
20 19 biimpa ( ( 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ∧ ( ♯ ‘ 𝑏 ) = 1 ) → ∃ 𝑥 𝑏 = { 𝑥 } )
21 10 18 20 syl2anc ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) → ∃ 𝑥 𝑏 = { 𝑥 } )
22 simpr ( ( ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑢 ∈ ( Base ‘ 𝐸 ) ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ 𝑣 finSupp ( 0g ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ) ∧ 𝑢 = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → 𝑢 = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) )
23 simplr ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → 𝑏 = { 𝑥 } )
24 eqidd ( 𝐸 /FldExt 𝐹 → ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) = ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) )
25 eqid ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 )
26 25 fldextsubrg ( 𝐸 /FldExt 𝐹 → ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ 𝐸 ) )
27 eqid ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 )
28 27 subrgss ( ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ 𝐸 ) → ( Base ‘ 𝐹 ) ⊆ ( Base ‘ 𝐸 ) )
29 26 28 syl ( 𝐸 /FldExt 𝐹 → ( Base ‘ 𝐹 ) ⊆ ( Base ‘ 𝐸 ) )
30 24 29 sravsca ( 𝐸 /FldExt 𝐹 → ( .r𝐸 ) = ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) )
31 30 eqcomd ( 𝐸 /FldExt 𝐹 → ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) = ( .r𝐸 ) )
32 31 ad5antr ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ 𝑖𝑏 ) → ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) = ( .r𝐸 ) )
33 32 oveqd ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ 𝑖𝑏 ) → ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) = ( ( 𝑣𝑖 ) ( .r𝐸 ) 𝑖 ) )
34 23 33 mpteq12dva ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) = ( 𝑖 ∈ { 𝑥 } ↦ ( ( 𝑣𝑖 ) ( .r𝐸 ) 𝑖 ) ) )
35 34 oveq2d ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → ( 𝐸 Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) = ( 𝐸 Σg ( 𝑖 ∈ { 𝑥 } ↦ ( ( 𝑣𝑖 ) ( .r𝐸 ) 𝑖 ) ) ) )
36 eqid ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) = ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) )
37 fldextfld1 ( 𝐸 /FldExt 𝐹𝐸 ∈ Field )
38 isfld ( 𝐸 ∈ Field ↔ ( 𝐸 ∈ DivRing ∧ 𝐸 ∈ CRing ) )
39 38 simplbi ( 𝐸 ∈ Field → 𝐸 ∈ DivRing )
40 37 39 syl ( 𝐸 /FldExt 𝐹𝐸 ∈ DivRing )
41 40 adantr ( ( 𝐸 /FldExt 𝐹𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) → 𝐸 ∈ DivRing )
42 26 adantr ( ( 𝐸 /FldExt 𝐹𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) → ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ 𝐸 ) )
43 eqid ( 𝐸s ( Base ‘ 𝐹 ) ) = ( 𝐸s ( Base ‘ 𝐹 ) )
44 fldextfld2 ( 𝐸 /FldExt 𝐹𝐹 ∈ Field )
45 isfld ( 𝐹 ∈ Field ↔ ( 𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing ) )
46 45 simplbi ( 𝐹 ∈ Field → 𝐹 ∈ DivRing )
47 44 46 syl ( 𝐸 /FldExt 𝐹𝐹 ∈ DivRing )
48 1 47 eqeltrrd ( 𝐸 /FldExt 𝐹 → ( 𝐸s ( Base ‘ 𝐹 ) ) ∈ DivRing )
49 48 adantr ( ( 𝐸 /FldExt 𝐹𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) → ( 𝐸s ( Base ‘ 𝐹 ) ) ∈ DivRing )
50 simpr ( ( 𝐸 /FldExt 𝐹𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) → 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) )
51 36 41 42 43 49 50 drgextgsum ( ( 𝐸 /FldExt 𝐹𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) → ( 𝐸 Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) )
52 51 adantlr ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) → ( 𝐸 Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) )
53 52 ad2antrr ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → ( 𝐸 Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) )
54 drngring ( 𝐸 ∈ DivRing → 𝐸 ∈ Ring )
55 37 39 54 3syl ( 𝐸 /FldExt 𝐹𝐸 ∈ Ring )
56 ringmnd ( 𝐸 ∈ Ring → 𝐸 ∈ Mnd )
57 55 56 syl ( 𝐸 /FldExt 𝐹𝐸 ∈ Mnd )
58 57 ad4antr ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → 𝐸 ∈ Mnd )
59 vex 𝑥 ∈ V
60 59 a1i ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → 𝑥 ∈ V )
61 55 ad3antrrr ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) → 𝐸 ∈ Ring )
62 61 adantr ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → 𝐸 ∈ Ring )
63 29 ad3antrrr ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) → ( Base ‘ 𝐹 ) ⊆ ( Base ‘ 𝐸 ) )
64 63 adantr ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → ( Base ‘ 𝐹 ) ⊆ ( Base ‘ 𝐸 ) )
65 elmapi ( 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) → 𝑣 : 𝑏 ⟶ ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) )
66 65 adantl ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → 𝑣 : 𝑏 ⟶ ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) )
67 vsnid 𝑥 ∈ { 𝑥 }
68 67 23 eleqtrrid ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → 𝑥𝑏 )
69 66 68 ffvelrnd ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → ( 𝑣𝑥 ) ∈ ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) )
70 24 29 srasca ( 𝐸 /FldExt 𝐹 → ( 𝐸s ( Base ‘ 𝐹 ) ) = ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) )
71 1 70 eqtrd ( 𝐸 /FldExt 𝐹𝐹 = ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) )
72 71 fveq2d ( 𝐸 /FldExt 𝐹 → ( Base ‘ 𝐹 ) = ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) )
73 72 ad4antr ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → ( Base ‘ 𝐹 ) = ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) )
74 69 73 eleqtrrd ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → ( 𝑣𝑥 ) ∈ ( Base ‘ 𝐹 ) )
75 64 74 sseldd ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → ( 𝑣𝑥 ) ∈ ( Base ‘ 𝐸 ) )
76 simpr ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) → 𝑏 = { 𝑥 } )
77 simplr ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) → 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) )
78 eqid ( Base ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) = ( Base ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) )
79 78 5 lbsss ( 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) → 𝑏 ⊆ ( Base ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) )
80 77 79 syl ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) → 𝑏 ⊆ ( Base ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) )
81 76 80 eqsstrrd ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) → { 𝑥 } ⊆ ( Base ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) )
82 59 snss ( 𝑥 ∈ ( Base ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ↔ { 𝑥 } ⊆ ( Base ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) )
83 81 82 sylibr ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) → 𝑥 ∈ ( Base ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) )
84 eqidd ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) → ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) = ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) )
85 84 63 srabase ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) → ( Base ‘ 𝐸 ) = ( Base ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) )
86 83 85 eleqtrrd ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) → 𝑥 ∈ ( Base ‘ 𝐸 ) )
87 86 adantr ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → 𝑥 ∈ ( Base ‘ 𝐸 ) )
88 eqid ( .r𝐸 ) = ( .r𝐸 )
89 27 88 ringcl ( ( 𝐸 ∈ Ring ∧ ( 𝑣𝑥 ) ∈ ( Base ‘ 𝐸 ) ∧ 𝑥 ∈ ( Base ‘ 𝐸 ) ) → ( ( 𝑣𝑥 ) ( .r𝐸 ) 𝑥 ) ∈ ( Base ‘ 𝐸 ) )
90 62 75 87 89 syl3anc ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → ( ( 𝑣𝑥 ) ( .r𝐸 ) 𝑥 ) ∈ ( Base ‘ 𝐸 ) )
91 simpr ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ 𝑖 = 𝑥 ) → 𝑖 = 𝑥 )
92 91 fveq2d ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ 𝑖 = 𝑥 ) → ( 𝑣𝑖 ) = ( 𝑣𝑥 ) )
93 92 91 oveq12d ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ 𝑖 = 𝑥 ) → ( ( 𝑣𝑖 ) ( .r𝐸 ) 𝑖 ) = ( ( 𝑣𝑥 ) ( .r𝐸 ) 𝑥 ) )
94 27 58 60 90 93 gsumsnd ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → ( 𝐸 Σg ( 𝑖 ∈ { 𝑥 } ↦ ( ( 𝑣𝑖 ) ( .r𝐸 ) 𝑖 ) ) ) = ( ( 𝑣𝑥 ) ( .r𝐸 ) 𝑥 ) )
95 1 fveq2d ( 𝐸 /FldExt 𝐹 → ( .r𝐹 ) = ( .r ‘ ( 𝐸s ( Base ‘ 𝐹 ) ) ) )
96 43 88 ressmulr ( ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ 𝐸 ) → ( .r𝐸 ) = ( .r ‘ ( 𝐸s ( Base ‘ 𝐹 ) ) ) )
97 26 96 syl ( 𝐸 /FldExt 𝐹 → ( .r𝐸 ) = ( .r ‘ ( 𝐸s ( Base ‘ 𝐹 ) ) ) )
98 95 97 eqtr4d ( 𝐸 /FldExt 𝐹 → ( .r𝐹 ) = ( .r𝐸 ) )
99 98 ad4antr ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → ( .r𝐹 ) = ( .r𝐸 ) )
100 99 oveqd ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → ( ( 𝑣𝑥 ) ( .r𝐹 ) 𝑥 ) = ( ( 𝑣𝑥 ) ( .r𝐸 ) 𝑥 ) )
101 94 100 eqtr4d ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → ( 𝐸 Σg ( 𝑖 ∈ { 𝑥 } ↦ ( ( 𝑣𝑖 ) ( .r𝐸 ) 𝑖 ) ) ) = ( ( 𝑣𝑥 ) ( .r𝐹 ) 𝑥 ) )
102 35 53 101 3eqtr3d ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) = ( ( 𝑣𝑥 ) ( .r𝐹 ) 𝑥 ) )
103 102 adantlr ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑢 ∈ ( Base ‘ 𝐸 ) ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) = ( ( 𝑣𝑥 ) ( .r𝐹 ) 𝑥 ) )
104 drngring ( 𝐹 ∈ DivRing → 𝐹 ∈ Ring )
105 44 46 104 3syl ( 𝐸 /FldExt 𝐹𝐹 ∈ Ring )
106 105 ad5antr ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑢 ∈ ( Base ‘ 𝐸 ) ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → 𝐹 ∈ Ring )
107 74 adantlr ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑢 ∈ ( Base ‘ 𝐸 ) ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → ( 𝑣𝑥 ) ∈ ( Base ‘ 𝐹 ) )
108 eqid ( 1r𝐸 ) = ( 1r𝐸 )
109 eqid ( Unit ‘ 𝐸 ) = ( Unit ‘ 𝐸 )
110 eqid ( invr𝐸 ) = ( invr𝐸 )
111 simp-5l ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → 𝐸 /FldExt 𝐹 )
112 111 55 syl ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → 𝐸 ∈ Ring )
113 87 adantr ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → 𝑥 ∈ ( Base ‘ 𝐸 ) )
114 75 adantr ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → ( 𝑣𝑥 ) ∈ ( Base ‘ 𝐸 ) )
115 38 simprbi ( 𝐸 ∈ Field → 𝐸 ∈ CRing )
116 111 37 115 3syl ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → 𝐸 ∈ CRing )
117 27 88 crngcom ( ( 𝐸 ∈ CRing ∧ 𝑥 ∈ ( Base ‘ 𝐸 ) ∧ ( 𝑣𝑥 ) ∈ ( Base ‘ 𝐸 ) ) → ( 𝑥 ( .r𝐸 ) ( 𝑣𝑥 ) ) = ( ( 𝑣𝑥 ) ( .r𝐸 ) 𝑥 ) )
118 116 113 114 117 syl3anc ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → ( 𝑥 ( .r𝐸 ) ( 𝑣𝑥 ) ) = ( ( 𝑣𝑥 ) ( .r𝐸 ) 𝑥 ) )
119 simpr ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → ( 1r𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) )
120 52 ad3antrrr ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → ( 𝐸 Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) )
121 34 adantr ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) = ( 𝑖 ∈ { 𝑥 } ↦ ( ( 𝑣𝑖 ) ( .r𝐸 ) 𝑖 ) ) )
122 121 oveq2d ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → ( 𝐸 Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) = ( 𝐸 Σg ( 𝑖 ∈ { 𝑥 } ↦ ( ( 𝑣𝑖 ) ( .r𝐸 ) 𝑖 ) ) ) )
123 119 120 122 3eqtr2d ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → ( 1r𝐸 ) = ( 𝐸 Σg ( 𝑖 ∈ { 𝑥 } ↦ ( ( 𝑣𝑖 ) ( .r𝐸 ) 𝑖 ) ) ) )
124 94 adantr ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → ( 𝐸 Σg ( 𝑖 ∈ { 𝑥 } ↦ ( ( 𝑣𝑖 ) ( .r𝐸 ) 𝑖 ) ) ) = ( ( 𝑣𝑥 ) ( .r𝐸 ) 𝑥 ) )
125 123 124 eqtrd ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → ( 1r𝐸 ) = ( ( 𝑣𝑥 ) ( .r𝐸 ) 𝑥 ) )
126 118 125 eqtr4d ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → ( 𝑥 ( .r𝐸 ) ( 𝑣𝑥 ) ) = ( 1r𝐸 ) )
127 125 eqcomd ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → ( ( 𝑣𝑥 ) ( .r𝐸 ) 𝑥 ) = ( 1r𝐸 ) )
128 27 88 108 109 110 112 113 114 126 127 invrvald ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → ( 𝑥 ∈ ( Unit ‘ 𝐸 ) ∧ ( ( invr𝐸 ) ‘ 𝑥 ) = ( 𝑣𝑥 ) ) )
129 128 simpld ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → 𝑥 ∈ ( Unit ‘ 𝐸 ) )
130 109 110 unitinvinv ( ( 𝐸 ∈ Ring ∧ 𝑥 ∈ ( Unit ‘ 𝐸 ) ) → ( ( invr𝐸 ) ‘ ( ( invr𝐸 ) ‘ 𝑥 ) ) = 𝑥 )
131 62 129 130 syl2an2r ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → ( ( invr𝐸 ) ‘ ( ( invr𝐸 ) ‘ 𝑥 ) ) = 𝑥 )
132 111 37 39 3syl ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → 𝐸 ∈ DivRing )
133 111 26 syl ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ 𝐸 ) )
134 111 1 syl ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → 𝐹 = ( 𝐸s ( Base ‘ 𝐹 ) ) )
135 111 44 46 3syl ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → 𝐹 ∈ DivRing )
136 134 135 eqeltrrd ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → ( 𝐸s ( Base ‘ 𝐹 ) ) ∈ DivRing )
137 128 simprd ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → ( ( invr𝐸 ) ‘ 𝑥 ) = ( 𝑣𝑥 ) )
138 74 adantr ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → ( 𝑣𝑥 ) ∈ ( Base ‘ 𝐹 ) )
139 137 138 eqeltrd ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → ( ( invr𝐸 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐹 ) )
140 eqidd ( 𝐸 /FldExt 𝐹 → ( 0g𝐸 ) = ( 0g𝐸 ) )
141 24 140 29 sralmod0 ( 𝐸 /FldExt 𝐹 → ( 0g𝐸 ) = ( 0g ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) )
142 141 ad2antrr ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) → ( 0g𝐸 ) = ( 0g ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) )
143 5 lbslinds ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ⊆ ( LIndS ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) )
144 143 10 sselid ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) → 𝑏 ∈ ( LIndS ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) )
145 eqid ( 0g ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) = ( 0g ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) )
146 145 0nellinds ( ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ∈ LVec ∧ 𝑏 ∈ ( LIndS ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) → ¬ ( 0g ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ∈ 𝑏 )
147 4 144 146 syl2an2r ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) → ¬ ( 0g ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ∈ 𝑏 )
148 142 147 eqneltrd ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) → ¬ ( 0g𝐸 ) ∈ 𝑏 )
149 148 ad3antrrr ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → ¬ ( 0g𝐸 ) ∈ 𝑏 )
150 nelne2 ( ( 𝑥𝑏 ∧ ¬ ( 0g𝐸 ) ∈ 𝑏 ) → 𝑥 ≠ ( 0g𝐸 ) )
151 68 149 150 syl2an2r ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → 𝑥 ≠ ( 0g𝐸 ) )
152 eqid ( 0g𝐸 ) = ( 0g𝐸 )
153 27 152 110 drnginvrn0 ( ( 𝐸 ∈ DivRing ∧ 𝑥 ∈ ( Base ‘ 𝐸 ) ∧ 𝑥 ≠ ( 0g𝐸 ) ) → ( ( invr𝐸 ) ‘ 𝑥 ) ≠ ( 0g𝐸 ) )
154 132 113 151 153 syl3anc ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → ( ( invr𝐸 ) ‘ 𝑥 ) ≠ ( 0g𝐸 ) )
155 eldifsn ( ( ( invr𝐸 ) ‘ 𝑥 ) ∈ ( ( Base ‘ 𝐹 ) ∖ { ( 0g𝐸 ) } ) ↔ ( ( ( invr𝐸 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐹 ) ∧ ( ( invr𝐸 ) ‘ 𝑥 ) ≠ ( 0g𝐸 ) ) )
156 139 154 155 sylanbrc ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → ( ( invr𝐸 ) ‘ 𝑥 ) ∈ ( ( Base ‘ 𝐹 ) ∖ { ( 0g𝐸 ) } ) )
157 fveq2 ( 𝑎 = ( ( invr𝐸 ) ‘ 𝑥 ) → ( ( invr𝐸 ) ‘ 𝑎 ) = ( ( invr𝐸 ) ‘ ( ( invr𝐸 ) ‘ 𝑥 ) ) )
158 157 eleq1d ( 𝑎 = ( ( invr𝐸 ) ‘ 𝑥 ) → ( ( ( invr𝐸 ) ‘ 𝑎 ) ∈ ( Base ‘ 𝐹 ) ↔ ( ( invr𝐸 ) ‘ ( ( invr𝐸 ) ‘ 𝑥 ) ) ∈ ( Base ‘ 𝐹 ) ) )
159 43 152 110 issubdrg ( ( 𝐸 ∈ DivRing ∧ ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ 𝐸 ) ) → ( ( 𝐸s ( Base ‘ 𝐹 ) ) ∈ DivRing ↔ ∀ 𝑎 ∈ ( ( Base ‘ 𝐹 ) ∖ { ( 0g𝐸 ) } ) ( ( invr𝐸 ) ‘ 𝑎 ) ∈ ( Base ‘ 𝐹 ) ) )
160 159 biimpa ( ( ( 𝐸 ∈ DivRing ∧ ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ 𝐸 ) ) ∧ ( 𝐸s ( Base ‘ 𝐹 ) ) ∈ DivRing ) → ∀ 𝑎 ∈ ( ( Base ‘ 𝐹 ) ∖ { ( 0g𝐸 ) } ) ( ( invr𝐸 ) ‘ 𝑎 ) ∈ ( Base ‘ 𝐹 ) )
161 160 adantr ( ( ( ( 𝐸 ∈ DivRing ∧ ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ 𝐸 ) ) ∧ ( 𝐸s ( Base ‘ 𝐹 ) ) ∈ DivRing ) ∧ ( ( invr𝐸 ) ‘ 𝑥 ) ∈ ( ( Base ‘ 𝐹 ) ∖ { ( 0g𝐸 ) } ) ) → ∀ 𝑎 ∈ ( ( Base ‘ 𝐹 ) ∖ { ( 0g𝐸 ) } ) ( ( invr𝐸 ) ‘ 𝑎 ) ∈ ( Base ‘ 𝐹 ) )
162 simpr ( ( ( ( 𝐸 ∈ DivRing ∧ ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ 𝐸 ) ) ∧ ( 𝐸s ( Base ‘ 𝐹 ) ) ∈ DivRing ) ∧ ( ( invr𝐸 ) ‘ 𝑥 ) ∈ ( ( Base ‘ 𝐹 ) ∖ { ( 0g𝐸 ) } ) ) → ( ( invr𝐸 ) ‘ 𝑥 ) ∈ ( ( Base ‘ 𝐹 ) ∖ { ( 0g𝐸 ) } ) )
163 158 161 162 rspcdva ( ( ( ( 𝐸 ∈ DivRing ∧ ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ 𝐸 ) ) ∧ ( 𝐸s ( Base ‘ 𝐹 ) ) ∈ DivRing ) ∧ ( ( invr𝐸 ) ‘ 𝑥 ) ∈ ( ( Base ‘ 𝐹 ) ∖ { ( 0g𝐸 ) } ) ) → ( ( invr𝐸 ) ‘ ( ( invr𝐸 ) ‘ 𝑥 ) ) ∈ ( Base ‘ 𝐹 ) )
164 132 133 136 156 163 syl1111anc ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → ( ( invr𝐸 ) ‘ ( ( invr𝐸 ) ‘ 𝑥 ) ) ∈ ( Base ‘ 𝐹 ) )
165 131 164 eqeltrrd ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → 𝑥 ∈ ( Base ‘ 𝐹 ) )
166 165 adantrl ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 𝑣 finSupp ( 0g ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ ( 1r𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) ) → 𝑥 ∈ ( Base ‘ 𝐹 ) )
167 27 108 ringidcl ( 𝐸 ∈ Ring → ( 1r𝐸 ) ∈ ( Base ‘ 𝐸 ) )
168 61 167 syl ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) → ( 1r𝐸 ) ∈ ( Base ‘ 𝐸 ) )
169 168 85 eleqtrd ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) → ( 1r𝐸 ) ∈ ( Base ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) )
170 eqid ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) = ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) )
171 eqid ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) = ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) )
172 eqid ( 0g ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) = ( 0g ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) )
173 eqid ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) = ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) )
174 4 ad2antrr ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) → ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ∈ LVec )
175 lveclmod ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ∈ LVec → ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ∈ LMod )
176 174 175 syl ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) → ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ∈ LMod )
177 78 170 171 172 173 176 77 lbslsp ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) → ( ( 1r𝐸 ) ∈ ( Base ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ↔ ∃ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ( 𝑣 finSupp ( 0g ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ ( 1r𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) ) )
178 169 177 mpbid ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) → ∃ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ( 𝑣 finSupp ( 0g ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ ( 1r𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) )
179 166 178 r19.29a ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) → 𝑥 ∈ ( Base ‘ 𝐹 ) )
180 179 ad2antrr ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑢 ∈ ( Base ‘ 𝐸 ) ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → 𝑥 ∈ ( Base ‘ 𝐹 ) )
181 eqid ( .r𝐹 ) = ( .r𝐹 )
182 25 181 ringcl ( ( 𝐹 ∈ Ring ∧ ( 𝑣𝑥 ) ∈ ( Base ‘ 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝐹 ) ) → ( ( 𝑣𝑥 ) ( .r𝐹 ) 𝑥 ) ∈ ( Base ‘ 𝐹 ) )
183 106 107 180 182 syl3anc ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑢 ∈ ( Base ‘ 𝐸 ) ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → ( ( 𝑣𝑥 ) ( .r𝐹 ) 𝑥 ) ∈ ( Base ‘ 𝐹 ) )
184 103 183 eqeltrd ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑢 ∈ ( Base ‘ 𝐸 ) ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ∈ ( Base ‘ 𝐹 ) )
185 184 ad2antrr ( ( ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑢 ∈ ( Base ‘ 𝐸 ) ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ 𝑣 finSupp ( 0g ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ) ∧ 𝑢 = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ∈ ( Base ‘ 𝐹 ) )
186 22 185 eqeltrd ( ( ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑢 ∈ ( Base ‘ 𝐸 ) ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ 𝑣 finSupp ( 0g ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ) ∧ 𝑢 = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → 𝑢 ∈ ( Base ‘ 𝐹 ) )
187 186 anasss ( ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑢 ∈ ( Base ‘ 𝐸 ) ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 𝑣 finSupp ( 0g ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑢 = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) ) → 𝑢 ∈ ( Base ‘ 𝐹 ) )
188 85 eleq2d ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) → ( 𝑢 ∈ ( Base ‘ 𝐸 ) ↔ 𝑢 ∈ ( Base ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) )
189 78 170 171 172 173 176 77 lbslsp ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) → ( 𝑢 ∈ ( Base ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ↔ ∃ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ( 𝑣 finSupp ( 0g ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑢 = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) ) )
190 188 189 bitrd ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) → ( 𝑢 ∈ ( Base ‘ 𝐸 ) ↔ ∃ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ( 𝑣 finSupp ( 0g ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑢 = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) ) )
191 190 biimpa ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑢 ∈ ( Base ‘ 𝐸 ) ) → ∃ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ( 𝑣 finSupp ( 0g ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑢 = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖𝑏 ↦ ( ( 𝑣𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) )
192 187 191 r19.29a ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑢 ∈ ( Base ‘ 𝐸 ) ) → 𝑢 ∈ ( Base ‘ 𝐹 ) )
193 192 ex ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) → ( 𝑢 ∈ ( Base ‘ 𝐸 ) → 𝑢 ∈ ( Base ‘ 𝐹 ) ) )
194 193 ssrdv ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) → ( Base ‘ 𝐸 ) ⊆ ( Base ‘ 𝐹 ) )
195 21 194 exlimddv ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) → ( Base ‘ 𝐸 ) ⊆ ( Base ‘ 𝐹 ) )
196 9 195 exlimddv ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) → ( Base ‘ 𝐸 ) ⊆ ( Base ‘ 𝐹 ) )
197 simpr ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ ( Base ‘ 𝐸 ) ⊆ ( Base ‘ 𝐹 ) ) → ( Base ‘ 𝐸 ) ⊆ ( Base ‘ 𝐹 ) )
198 37 ad2antrr ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ ( Base ‘ 𝐸 ) ⊆ ( Base ‘ 𝐹 ) ) → 𝐸 ∈ Field )
199 fvexd ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ ( Base ‘ 𝐸 ) ⊆ ( Base ‘ 𝐹 ) ) → ( Base ‘ 𝐹 ) ∈ V )
200 43 27 ressid2 ( ( ( Base ‘ 𝐸 ) ⊆ ( Base ‘ 𝐹 ) ∧ 𝐸 ∈ Field ∧ ( Base ‘ 𝐹 ) ∈ V ) → ( 𝐸s ( Base ‘ 𝐹 ) ) = 𝐸 )
201 197 198 199 200 syl3anc ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ ( Base ‘ 𝐸 ) ⊆ ( Base ‘ 𝐹 ) ) → ( 𝐸s ( Base ‘ 𝐹 ) ) = 𝐸 )
202 196 201 mpdan ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) → ( 𝐸s ( Base ‘ 𝐹 ) ) = 𝐸 )
203 2 202 eqtr2d ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) → 𝐸 = 𝐹 )