Step |
Hyp |
Ref |
Expression |
1 |
|
fldextress |
⊢ ( 𝐸 /FldExt 𝐹 → 𝐹 = ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ) |
2 |
1
|
adantr |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) → 𝐹 = ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ) |
3 |
|
fldextsralvec |
⊢ ( 𝐸 /FldExt 𝐹 → ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ∈ LVec ) |
4 |
3
|
adantr |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) → ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ∈ LVec ) |
5 |
|
eqid |
⊢ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) = ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) |
6 |
5
|
lbsex |
⊢ ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ∈ LVec → ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ≠ ∅ ) |
7 |
4 6
|
syl |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) → ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ≠ ∅ ) |
8 |
|
n0 |
⊢ ( ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ≠ ∅ ↔ ∃ 𝑏 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) |
9 |
7 8
|
sylib |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) → ∃ 𝑏 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) |
10 |
|
simpr |
⊢ ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) → 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) |
11 |
5
|
dimval |
⊢ ( ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ∈ LVec ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) → ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) = ( ♯ ‘ 𝑏 ) ) |
12 |
4 11
|
sylan |
⊢ ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) → ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) = ( ♯ ‘ 𝑏 ) ) |
13 |
|
extdgval |
⊢ ( 𝐸 /FldExt 𝐹 → ( 𝐸 [:] 𝐹 ) = ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) → ( 𝐸 [:] 𝐹 ) = ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) |
15 |
|
simpr |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) → ( 𝐸 [:] 𝐹 ) = 1 ) |
16 |
14 15
|
eqtr3d |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) → ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) = 1 ) |
17 |
16
|
adantr |
⊢ ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) → ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) = 1 ) |
18 |
12 17
|
eqtr3d |
⊢ ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) → ( ♯ ‘ 𝑏 ) = 1 ) |
19 |
|
hash1snb |
⊢ ( 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) → ( ( ♯ ‘ 𝑏 ) = 1 ↔ ∃ 𝑥 𝑏 = { 𝑥 } ) ) |
20 |
19
|
biimpa |
⊢ ( ( 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ∧ ( ♯ ‘ 𝑏 ) = 1 ) → ∃ 𝑥 𝑏 = { 𝑥 } ) |
21 |
10 18 20
|
syl2anc |
⊢ ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) → ∃ 𝑥 𝑏 = { 𝑥 } ) |
22 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑢 ∈ ( Base ‘ 𝐸 ) ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ 𝑣 finSupp ( 0g ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ) ∧ 𝑢 = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → 𝑢 = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) |
23 |
|
simplr |
⊢ ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → 𝑏 = { 𝑥 } ) |
24 |
|
eqidd |
⊢ ( 𝐸 /FldExt 𝐹 → ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) = ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) |
25 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
26 |
25
|
fldextsubrg |
⊢ ( 𝐸 /FldExt 𝐹 → ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ 𝐸 ) ) |
27 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
28 |
27
|
subrgss |
⊢ ( ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ 𝐸 ) → ( Base ‘ 𝐹 ) ⊆ ( Base ‘ 𝐸 ) ) |
29 |
26 28
|
syl |
⊢ ( 𝐸 /FldExt 𝐹 → ( Base ‘ 𝐹 ) ⊆ ( Base ‘ 𝐸 ) ) |
30 |
24 29
|
sravsca |
⊢ ( 𝐸 /FldExt 𝐹 → ( .r ‘ 𝐸 ) = ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) |
31 |
30
|
eqcomd |
⊢ ( 𝐸 /FldExt 𝐹 → ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) = ( .r ‘ 𝐸 ) ) |
32 |
31
|
ad5antr |
⊢ ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ 𝑖 ∈ 𝑏 ) → ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) = ( .r ‘ 𝐸 ) ) |
33 |
32
|
oveqd |
⊢ ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ 𝑖 ∈ 𝑏 ) → ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) = ( ( 𝑣 ‘ 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ) |
34 |
23 33
|
mpteq12dva |
⊢ ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) = ( 𝑖 ∈ { 𝑥 } ↦ ( ( 𝑣 ‘ 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ) ) |
35 |
34
|
oveq2d |
⊢ ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → ( 𝐸 Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) = ( 𝐸 Σg ( 𝑖 ∈ { 𝑥 } ↦ ( ( 𝑣 ‘ 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ) ) ) |
36 |
|
eqid |
⊢ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) = ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) |
37 |
|
fldextfld1 |
⊢ ( 𝐸 /FldExt 𝐹 → 𝐸 ∈ Field ) |
38 |
|
isfld |
⊢ ( 𝐸 ∈ Field ↔ ( 𝐸 ∈ DivRing ∧ 𝐸 ∈ CRing ) ) |
39 |
38
|
simplbi |
⊢ ( 𝐸 ∈ Field → 𝐸 ∈ DivRing ) |
40 |
37 39
|
syl |
⊢ ( 𝐸 /FldExt 𝐹 → 𝐸 ∈ DivRing ) |
41 |
40
|
adantr |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) → 𝐸 ∈ DivRing ) |
42 |
26
|
adantr |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) → ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ 𝐸 ) ) |
43 |
|
eqid |
⊢ ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) = ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) |
44 |
|
fldextfld2 |
⊢ ( 𝐸 /FldExt 𝐹 → 𝐹 ∈ Field ) |
45 |
|
isfld |
⊢ ( 𝐹 ∈ Field ↔ ( 𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing ) ) |
46 |
45
|
simplbi |
⊢ ( 𝐹 ∈ Field → 𝐹 ∈ DivRing ) |
47 |
44 46
|
syl |
⊢ ( 𝐸 /FldExt 𝐹 → 𝐹 ∈ DivRing ) |
48 |
1 47
|
eqeltrrd |
⊢ ( 𝐸 /FldExt 𝐹 → ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ∈ DivRing ) |
49 |
48
|
adantr |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) → ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ∈ DivRing ) |
50 |
|
simpr |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) → 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) |
51 |
36 41 42 43 49 50
|
drgextgsum |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) → ( 𝐸 Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) |
52 |
51
|
adantlr |
⊢ ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) → ( 𝐸 Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) |
53 |
52
|
ad2antrr |
⊢ ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → ( 𝐸 Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) |
54 |
|
drngring |
⊢ ( 𝐸 ∈ DivRing → 𝐸 ∈ Ring ) |
55 |
37 39 54
|
3syl |
⊢ ( 𝐸 /FldExt 𝐹 → 𝐸 ∈ Ring ) |
56 |
|
ringmnd |
⊢ ( 𝐸 ∈ Ring → 𝐸 ∈ Mnd ) |
57 |
55 56
|
syl |
⊢ ( 𝐸 /FldExt 𝐹 → 𝐸 ∈ Mnd ) |
58 |
57
|
ad4antr |
⊢ ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → 𝐸 ∈ Mnd ) |
59 |
|
vex |
⊢ 𝑥 ∈ V |
60 |
59
|
a1i |
⊢ ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → 𝑥 ∈ V ) |
61 |
55
|
ad3antrrr |
⊢ ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) → 𝐸 ∈ Ring ) |
62 |
61
|
adantr |
⊢ ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → 𝐸 ∈ Ring ) |
63 |
29
|
ad3antrrr |
⊢ ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) → ( Base ‘ 𝐹 ) ⊆ ( Base ‘ 𝐸 ) ) |
64 |
63
|
adantr |
⊢ ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → ( Base ‘ 𝐹 ) ⊆ ( Base ‘ 𝐸 ) ) |
65 |
|
elmapi |
⊢ ( 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) → 𝑣 : 𝑏 ⟶ ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ) |
66 |
65
|
adantl |
⊢ ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → 𝑣 : 𝑏 ⟶ ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ) |
67 |
|
vsnid |
⊢ 𝑥 ∈ { 𝑥 } |
68 |
67 23
|
eleqtrrid |
⊢ ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → 𝑥 ∈ 𝑏 ) |
69 |
66 68
|
ffvelrnd |
⊢ ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → ( 𝑣 ‘ 𝑥 ) ∈ ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ) |
70 |
24 29
|
srasca |
⊢ ( 𝐸 /FldExt 𝐹 → ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) = ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) |
71 |
1 70
|
eqtrd |
⊢ ( 𝐸 /FldExt 𝐹 → 𝐹 = ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) |
72 |
71
|
fveq2d |
⊢ ( 𝐸 /FldExt 𝐹 → ( Base ‘ 𝐹 ) = ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ) |
73 |
72
|
ad4antr |
⊢ ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → ( Base ‘ 𝐹 ) = ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ) |
74 |
69 73
|
eleqtrrd |
⊢ ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → ( 𝑣 ‘ 𝑥 ) ∈ ( Base ‘ 𝐹 ) ) |
75 |
64 74
|
sseldd |
⊢ ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → ( 𝑣 ‘ 𝑥 ) ∈ ( Base ‘ 𝐸 ) ) |
76 |
|
simpr |
⊢ ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) → 𝑏 = { 𝑥 } ) |
77 |
|
simplr |
⊢ ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) → 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) |
78 |
|
eqid |
⊢ ( Base ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) = ( Base ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) |
79 |
78 5
|
lbsss |
⊢ ( 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) → 𝑏 ⊆ ( Base ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) |
80 |
77 79
|
syl |
⊢ ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) → 𝑏 ⊆ ( Base ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) |
81 |
76 80
|
eqsstrrd |
⊢ ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) → { 𝑥 } ⊆ ( Base ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) |
82 |
59
|
snss |
⊢ ( 𝑥 ∈ ( Base ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ↔ { 𝑥 } ⊆ ( Base ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) |
83 |
81 82
|
sylibr |
⊢ ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) → 𝑥 ∈ ( Base ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) |
84 |
|
eqidd |
⊢ ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) → ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) = ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) |
85 |
84 63
|
srabase |
⊢ ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) → ( Base ‘ 𝐸 ) = ( Base ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) |
86 |
83 85
|
eleqtrrd |
⊢ ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) → 𝑥 ∈ ( Base ‘ 𝐸 ) ) |
87 |
86
|
adantr |
⊢ ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → 𝑥 ∈ ( Base ‘ 𝐸 ) ) |
88 |
|
eqid |
⊢ ( .r ‘ 𝐸 ) = ( .r ‘ 𝐸 ) |
89 |
27 88
|
ringcl |
⊢ ( ( 𝐸 ∈ Ring ∧ ( 𝑣 ‘ 𝑥 ) ∈ ( Base ‘ 𝐸 ) ∧ 𝑥 ∈ ( Base ‘ 𝐸 ) ) → ( ( 𝑣 ‘ 𝑥 ) ( .r ‘ 𝐸 ) 𝑥 ) ∈ ( Base ‘ 𝐸 ) ) |
90 |
62 75 87 89
|
syl3anc |
⊢ ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → ( ( 𝑣 ‘ 𝑥 ) ( .r ‘ 𝐸 ) 𝑥 ) ∈ ( Base ‘ 𝐸 ) ) |
91 |
|
simpr |
⊢ ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ 𝑖 = 𝑥 ) → 𝑖 = 𝑥 ) |
92 |
91
|
fveq2d |
⊢ ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ 𝑖 = 𝑥 ) → ( 𝑣 ‘ 𝑖 ) = ( 𝑣 ‘ 𝑥 ) ) |
93 |
92 91
|
oveq12d |
⊢ ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ 𝑖 = 𝑥 ) → ( ( 𝑣 ‘ 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) = ( ( 𝑣 ‘ 𝑥 ) ( .r ‘ 𝐸 ) 𝑥 ) ) |
94 |
27 58 60 90 93
|
gsumsnd |
⊢ ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → ( 𝐸 Σg ( 𝑖 ∈ { 𝑥 } ↦ ( ( 𝑣 ‘ 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ) ) = ( ( 𝑣 ‘ 𝑥 ) ( .r ‘ 𝐸 ) 𝑥 ) ) |
95 |
1
|
fveq2d |
⊢ ( 𝐸 /FldExt 𝐹 → ( .r ‘ 𝐹 ) = ( .r ‘ ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ) ) |
96 |
43 88
|
ressmulr |
⊢ ( ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ 𝐸 ) → ( .r ‘ 𝐸 ) = ( .r ‘ ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ) ) |
97 |
26 96
|
syl |
⊢ ( 𝐸 /FldExt 𝐹 → ( .r ‘ 𝐸 ) = ( .r ‘ ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ) ) |
98 |
95 97
|
eqtr4d |
⊢ ( 𝐸 /FldExt 𝐹 → ( .r ‘ 𝐹 ) = ( .r ‘ 𝐸 ) ) |
99 |
98
|
ad4antr |
⊢ ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → ( .r ‘ 𝐹 ) = ( .r ‘ 𝐸 ) ) |
100 |
99
|
oveqd |
⊢ ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → ( ( 𝑣 ‘ 𝑥 ) ( .r ‘ 𝐹 ) 𝑥 ) = ( ( 𝑣 ‘ 𝑥 ) ( .r ‘ 𝐸 ) 𝑥 ) ) |
101 |
94 100
|
eqtr4d |
⊢ ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → ( 𝐸 Σg ( 𝑖 ∈ { 𝑥 } ↦ ( ( 𝑣 ‘ 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ) ) = ( ( 𝑣 ‘ 𝑥 ) ( .r ‘ 𝐹 ) 𝑥 ) ) |
102 |
35 53 101
|
3eqtr3d |
⊢ ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) = ( ( 𝑣 ‘ 𝑥 ) ( .r ‘ 𝐹 ) 𝑥 ) ) |
103 |
102
|
adantlr |
⊢ ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑢 ∈ ( Base ‘ 𝐸 ) ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) = ( ( 𝑣 ‘ 𝑥 ) ( .r ‘ 𝐹 ) 𝑥 ) ) |
104 |
|
drngring |
⊢ ( 𝐹 ∈ DivRing → 𝐹 ∈ Ring ) |
105 |
44 46 104
|
3syl |
⊢ ( 𝐸 /FldExt 𝐹 → 𝐹 ∈ Ring ) |
106 |
105
|
ad5antr |
⊢ ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑢 ∈ ( Base ‘ 𝐸 ) ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → 𝐹 ∈ Ring ) |
107 |
74
|
adantlr |
⊢ ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑢 ∈ ( Base ‘ 𝐸 ) ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → ( 𝑣 ‘ 𝑥 ) ∈ ( Base ‘ 𝐹 ) ) |
108 |
|
eqid |
⊢ ( 1r ‘ 𝐸 ) = ( 1r ‘ 𝐸 ) |
109 |
|
eqid |
⊢ ( Unit ‘ 𝐸 ) = ( Unit ‘ 𝐸 ) |
110 |
|
eqid |
⊢ ( invr ‘ 𝐸 ) = ( invr ‘ 𝐸 ) |
111 |
|
simp-5l |
⊢ ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r ‘ 𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → 𝐸 /FldExt 𝐹 ) |
112 |
111 55
|
syl |
⊢ ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r ‘ 𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → 𝐸 ∈ Ring ) |
113 |
87
|
adantr |
⊢ ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r ‘ 𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → 𝑥 ∈ ( Base ‘ 𝐸 ) ) |
114 |
75
|
adantr |
⊢ ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r ‘ 𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → ( 𝑣 ‘ 𝑥 ) ∈ ( Base ‘ 𝐸 ) ) |
115 |
38
|
simprbi |
⊢ ( 𝐸 ∈ Field → 𝐸 ∈ CRing ) |
116 |
111 37 115
|
3syl |
⊢ ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r ‘ 𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → 𝐸 ∈ CRing ) |
117 |
27 88
|
crngcom |
⊢ ( ( 𝐸 ∈ CRing ∧ 𝑥 ∈ ( Base ‘ 𝐸 ) ∧ ( 𝑣 ‘ 𝑥 ) ∈ ( Base ‘ 𝐸 ) ) → ( 𝑥 ( .r ‘ 𝐸 ) ( 𝑣 ‘ 𝑥 ) ) = ( ( 𝑣 ‘ 𝑥 ) ( .r ‘ 𝐸 ) 𝑥 ) ) |
118 |
116 113 114 117
|
syl3anc |
⊢ ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r ‘ 𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → ( 𝑥 ( .r ‘ 𝐸 ) ( 𝑣 ‘ 𝑥 ) ) = ( ( 𝑣 ‘ 𝑥 ) ( .r ‘ 𝐸 ) 𝑥 ) ) |
119 |
|
simpr |
⊢ ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r ‘ 𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → ( 1r ‘ 𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) |
120 |
52
|
ad3antrrr |
⊢ ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r ‘ 𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → ( 𝐸 Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) |
121 |
34
|
adantr |
⊢ ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r ‘ 𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) = ( 𝑖 ∈ { 𝑥 } ↦ ( ( 𝑣 ‘ 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ) ) |
122 |
121
|
oveq2d |
⊢ ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r ‘ 𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → ( 𝐸 Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) = ( 𝐸 Σg ( 𝑖 ∈ { 𝑥 } ↦ ( ( 𝑣 ‘ 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ) ) ) |
123 |
119 120 122
|
3eqtr2d |
⊢ ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r ‘ 𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → ( 1r ‘ 𝐸 ) = ( 𝐸 Σg ( 𝑖 ∈ { 𝑥 } ↦ ( ( 𝑣 ‘ 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ) ) ) |
124 |
94
|
adantr |
⊢ ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r ‘ 𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → ( 𝐸 Σg ( 𝑖 ∈ { 𝑥 } ↦ ( ( 𝑣 ‘ 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ) ) = ( ( 𝑣 ‘ 𝑥 ) ( .r ‘ 𝐸 ) 𝑥 ) ) |
125 |
123 124
|
eqtrd |
⊢ ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r ‘ 𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → ( 1r ‘ 𝐸 ) = ( ( 𝑣 ‘ 𝑥 ) ( .r ‘ 𝐸 ) 𝑥 ) ) |
126 |
118 125
|
eqtr4d |
⊢ ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r ‘ 𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → ( 𝑥 ( .r ‘ 𝐸 ) ( 𝑣 ‘ 𝑥 ) ) = ( 1r ‘ 𝐸 ) ) |
127 |
125
|
eqcomd |
⊢ ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r ‘ 𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → ( ( 𝑣 ‘ 𝑥 ) ( .r ‘ 𝐸 ) 𝑥 ) = ( 1r ‘ 𝐸 ) ) |
128 |
27 88 108 109 110 112 113 114 126 127
|
invrvald |
⊢ ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r ‘ 𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → ( 𝑥 ∈ ( Unit ‘ 𝐸 ) ∧ ( ( invr ‘ 𝐸 ) ‘ 𝑥 ) = ( 𝑣 ‘ 𝑥 ) ) ) |
129 |
128
|
simpld |
⊢ ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r ‘ 𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → 𝑥 ∈ ( Unit ‘ 𝐸 ) ) |
130 |
109 110
|
unitinvinv |
⊢ ( ( 𝐸 ∈ Ring ∧ 𝑥 ∈ ( Unit ‘ 𝐸 ) ) → ( ( invr ‘ 𝐸 ) ‘ ( ( invr ‘ 𝐸 ) ‘ 𝑥 ) ) = 𝑥 ) |
131 |
62 129 130
|
syl2an2r |
⊢ ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r ‘ 𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → ( ( invr ‘ 𝐸 ) ‘ ( ( invr ‘ 𝐸 ) ‘ 𝑥 ) ) = 𝑥 ) |
132 |
111 37 39
|
3syl |
⊢ ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r ‘ 𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → 𝐸 ∈ DivRing ) |
133 |
111 26
|
syl |
⊢ ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r ‘ 𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ 𝐸 ) ) |
134 |
111 1
|
syl |
⊢ ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r ‘ 𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → 𝐹 = ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ) |
135 |
111 44 46
|
3syl |
⊢ ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r ‘ 𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → 𝐹 ∈ DivRing ) |
136 |
134 135
|
eqeltrrd |
⊢ ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r ‘ 𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ∈ DivRing ) |
137 |
128
|
simprd |
⊢ ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r ‘ 𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → ( ( invr ‘ 𝐸 ) ‘ 𝑥 ) = ( 𝑣 ‘ 𝑥 ) ) |
138 |
74
|
adantr |
⊢ ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r ‘ 𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → ( 𝑣 ‘ 𝑥 ) ∈ ( Base ‘ 𝐹 ) ) |
139 |
137 138
|
eqeltrd |
⊢ ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r ‘ 𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → ( ( invr ‘ 𝐸 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐹 ) ) |
140 |
|
eqidd |
⊢ ( 𝐸 /FldExt 𝐹 → ( 0g ‘ 𝐸 ) = ( 0g ‘ 𝐸 ) ) |
141 |
24 140 29
|
sralmod0 |
⊢ ( 𝐸 /FldExt 𝐹 → ( 0g ‘ 𝐸 ) = ( 0g ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) |
142 |
141
|
ad2antrr |
⊢ ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) → ( 0g ‘ 𝐸 ) = ( 0g ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) |
143 |
5
|
lbslinds |
⊢ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ⊆ ( LIndS ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) |
144 |
143 10
|
sselid |
⊢ ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) → 𝑏 ∈ ( LIndS ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) |
145 |
|
eqid |
⊢ ( 0g ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) = ( 0g ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) |
146 |
145
|
0nellinds |
⊢ ( ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ∈ LVec ∧ 𝑏 ∈ ( LIndS ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) → ¬ ( 0g ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ∈ 𝑏 ) |
147 |
4 144 146
|
syl2an2r |
⊢ ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) → ¬ ( 0g ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ∈ 𝑏 ) |
148 |
142 147
|
eqneltrd |
⊢ ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) → ¬ ( 0g ‘ 𝐸 ) ∈ 𝑏 ) |
149 |
148
|
ad3antrrr |
⊢ ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r ‘ 𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → ¬ ( 0g ‘ 𝐸 ) ∈ 𝑏 ) |
150 |
|
nelne2 |
⊢ ( ( 𝑥 ∈ 𝑏 ∧ ¬ ( 0g ‘ 𝐸 ) ∈ 𝑏 ) → 𝑥 ≠ ( 0g ‘ 𝐸 ) ) |
151 |
68 149 150
|
syl2an2r |
⊢ ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r ‘ 𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → 𝑥 ≠ ( 0g ‘ 𝐸 ) ) |
152 |
|
eqid |
⊢ ( 0g ‘ 𝐸 ) = ( 0g ‘ 𝐸 ) |
153 |
27 152 110
|
drnginvrn0 |
⊢ ( ( 𝐸 ∈ DivRing ∧ 𝑥 ∈ ( Base ‘ 𝐸 ) ∧ 𝑥 ≠ ( 0g ‘ 𝐸 ) ) → ( ( invr ‘ 𝐸 ) ‘ 𝑥 ) ≠ ( 0g ‘ 𝐸 ) ) |
154 |
132 113 151 153
|
syl3anc |
⊢ ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r ‘ 𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → ( ( invr ‘ 𝐸 ) ‘ 𝑥 ) ≠ ( 0g ‘ 𝐸 ) ) |
155 |
|
eldifsn |
⊢ ( ( ( invr ‘ 𝐸 ) ‘ 𝑥 ) ∈ ( ( Base ‘ 𝐹 ) ∖ { ( 0g ‘ 𝐸 ) } ) ↔ ( ( ( invr ‘ 𝐸 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐹 ) ∧ ( ( invr ‘ 𝐸 ) ‘ 𝑥 ) ≠ ( 0g ‘ 𝐸 ) ) ) |
156 |
139 154 155
|
sylanbrc |
⊢ ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r ‘ 𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → ( ( invr ‘ 𝐸 ) ‘ 𝑥 ) ∈ ( ( Base ‘ 𝐹 ) ∖ { ( 0g ‘ 𝐸 ) } ) ) |
157 |
|
fveq2 |
⊢ ( 𝑎 = ( ( invr ‘ 𝐸 ) ‘ 𝑥 ) → ( ( invr ‘ 𝐸 ) ‘ 𝑎 ) = ( ( invr ‘ 𝐸 ) ‘ ( ( invr ‘ 𝐸 ) ‘ 𝑥 ) ) ) |
158 |
157
|
eleq1d |
⊢ ( 𝑎 = ( ( invr ‘ 𝐸 ) ‘ 𝑥 ) → ( ( ( invr ‘ 𝐸 ) ‘ 𝑎 ) ∈ ( Base ‘ 𝐹 ) ↔ ( ( invr ‘ 𝐸 ) ‘ ( ( invr ‘ 𝐸 ) ‘ 𝑥 ) ) ∈ ( Base ‘ 𝐹 ) ) ) |
159 |
43 152 110
|
issubdrg |
⊢ ( ( 𝐸 ∈ DivRing ∧ ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ 𝐸 ) ) → ( ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ∈ DivRing ↔ ∀ 𝑎 ∈ ( ( Base ‘ 𝐹 ) ∖ { ( 0g ‘ 𝐸 ) } ) ( ( invr ‘ 𝐸 ) ‘ 𝑎 ) ∈ ( Base ‘ 𝐹 ) ) ) |
160 |
159
|
biimpa |
⊢ ( ( ( 𝐸 ∈ DivRing ∧ ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ 𝐸 ) ) ∧ ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ∈ DivRing ) → ∀ 𝑎 ∈ ( ( Base ‘ 𝐹 ) ∖ { ( 0g ‘ 𝐸 ) } ) ( ( invr ‘ 𝐸 ) ‘ 𝑎 ) ∈ ( Base ‘ 𝐹 ) ) |
161 |
160
|
adantr |
⊢ ( ( ( ( 𝐸 ∈ DivRing ∧ ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ 𝐸 ) ) ∧ ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ∈ DivRing ) ∧ ( ( invr ‘ 𝐸 ) ‘ 𝑥 ) ∈ ( ( Base ‘ 𝐹 ) ∖ { ( 0g ‘ 𝐸 ) } ) ) → ∀ 𝑎 ∈ ( ( Base ‘ 𝐹 ) ∖ { ( 0g ‘ 𝐸 ) } ) ( ( invr ‘ 𝐸 ) ‘ 𝑎 ) ∈ ( Base ‘ 𝐹 ) ) |
162 |
|
simpr |
⊢ ( ( ( ( 𝐸 ∈ DivRing ∧ ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ 𝐸 ) ) ∧ ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ∈ DivRing ) ∧ ( ( invr ‘ 𝐸 ) ‘ 𝑥 ) ∈ ( ( Base ‘ 𝐹 ) ∖ { ( 0g ‘ 𝐸 ) } ) ) → ( ( invr ‘ 𝐸 ) ‘ 𝑥 ) ∈ ( ( Base ‘ 𝐹 ) ∖ { ( 0g ‘ 𝐸 ) } ) ) |
163 |
158 161 162
|
rspcdva |
⊢ ( ( ( ( 𝐸 ∈ DivRing ∧ ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ 𝐸 ) ) ∧ ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ∈ DivRing ) ∧ ( ( invr ‘ 𝐸 ) ‘ 𝑥 ) ∈ ( ( Base ‘ 𝐹 ) ∖ { ( 0g ‘ 𝐸 ) } ) ) → ( ( invr ‘ 𝐸 ) ‘ ( ( invr ‘ 𝐸 ) ‘ 𝑥 ) ) ∈ ( Base ‘ 𝐹 ) ) |
164 |
132 133 136 156 163
|
syl1111anc |
⊢ ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r ‘ 𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → ( ( invr ‘ 𝐸 ) ‘ ( ( invr ‘ 𝐸 ) ‘ 𝑥 ) ) ∈ ( Base ‘ 𝐹 ) ) |
165 |
131 164
|
eqeltrrd |
⊢ ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 1r ‘ 𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → 𝑥 ∈ ( Base ‘ 𝐹 ) ) |
166 |
165
|
adantrl |
⊢ ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 𝑣 finSupp ( 0g ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ ( 1r ‘ 𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) ) → 𝑥 ∈ ( Base ‘ 𝐹 ) ) |
167 |
27 108
|
ringidcl |
⊢ ( 𝐸 ∈ Ring → ( 1r ‘ 𝐸 ) ∈ ( Base ‘ 𝐸 ) ) |
168 |
61 167
|
syl |
⊢ ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) → ( 1r ‘ 𝐸 ) ∈ ( Base ‘ 𝐸 ) ) |
169 |
168 85
|
eleqtrd |
⊢ ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) → ( 1r ‘ 𝐸 ) ∈ ( Base ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) |
170 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) = ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) |
171 |
|
eqid |
⊢ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) = ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) |
172 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) = ( 0g ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) |
173 |
|
eqid |
⊢ ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) = ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) |
174 |
4
|
ad2antrr |
⊢ ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) → ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ∈ LVec ) |
175 |
|
lveclmod |
⊢ ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ∈ LVec → ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ∈ LMod ) |
176 |
174 175
|
syl |
⊢ ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) → ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ∈ LMod ) |
177 |
78 170 171 172 173 176 77
|
lbslsp |
⊢ ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) → ( ( 1r ‘ 𝐸 ) ∈ ( Base ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ↔ ∃ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ( 𝑣 finSupp ( 0g ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ ( 1r ‘ 𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) ) ) |
178 |
169 177
|
mpbid |
⊢ ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) → ∃ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ( 𝑣 finSupp ( 0g ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ ( 1r ‘ 𝐸 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) ) |
179 |
166 178
|
r19.29a |
⊢ ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) → 𝑥 ∈ ( Base ‘ 𝐹 ) ) |
180 |
179
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑢 ∈ ( Base ‘ 𝐸 ) ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → 𝑥 ∈ ( Base ‘ 𝐹 ) ) |
181 |
|
eqid |
⊢ ( .r ‘ 𝐹 ) = ( .r ‘ 𝐹 ) |
182 |
25 181
|
ringcl |
⊢ ( ( 𝐹 ∈ Ring ∧ ( 𝑣 ‘ 𝑥 ) ∈ ( Base ‘ 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝐹 ) ) → ( ( 𝑣 ‘ 𝑥 ) ( .r ‘ 𝐹 ) 𝑥 ) ∈ ( Base ‘ 𝐹 ) ) |
183 |
106 107 180 182
|
syl3anc |
⊢ ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑢 ∈ ( Base ‘ 𝐸 ) ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → ( ( 𝑣 ‘ 𝑥 ) ( .r ‘ 𝐹 ) 𝑥 ) ∈ ( Base ‘ 𝐹 ) ) |
184 |
103 183
|
eqeltrd |
⊢ ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑢 ∈ ( Base ‘ 𝐸 ) ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) → ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ∈ ( Base ‘ 𝐹 ) ) |
185 |
184
|
ad2antrr |
⊢ ( ( ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑢 ∈ ( Base ‘ 𝐸 ) ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ 𝑣 finSupp ( 0g ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ) ∧ 𝑢 = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ∈ ( Base ‘ 𝐹 ) ) |
186 |
22 185
|
eqeltrd |
⊢ ( ( ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑢 ∈ ( Base ‘ 𝐸 ) ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ 𝑣 finSupp ( 0g ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ) ∧ 𝑢 = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) → 𝑢 ∈ ( Base ‘ 𝐹 ) ) |
187 |
186
|
anasss |
⊢ ( ( ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑢 ∈ ( Base ‘ 𝐸 ) ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ) ∧ ( 𝑣 finSupp ( 0g ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑢 = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) ) → 𝑢 ∈ ( Base ‘ 𝐹 ) ) |
188 |
85
|
eleq2d |
⊢ ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) → ( 𝑢 ∈ ( Base ‘ 𝐸 ) ↔ 𝑢 ∈ ( Base ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ) |
189 |
78 170 171 172 173 176 77
|
lbslsp |
⊢ ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) → ( 𝑢 ∈ ( Base ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ↔ ∃ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ( 𝑣 finSupp ( 0g ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑢 = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) ) ) |
190 |
188 189
|
bitrd |
⊢ ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) → ( 𝑢 ∈ ( Base ‘ 𝐸 ) ↔ ∃ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ( 𝑣 finSupp ( 0g ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑢 = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) ) ) |
191 |
190
|
biimpa |
⊢ ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑢 ∈ ( Base ‘ 𝐸 ) ) → ∃ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ↑m 𝑏 ) ( 𝑣 finSupp ( 0g ‘ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑢 = ( ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) Σg ( 𝑖 ∈ 𝑏 ↦ ( ( 𝑣 ‘ 𝑖 ) ( ·𝑠 ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) 𝑖 ) ) ) ) ) |
192 |
187 191
|
r19.29a |
⊢ ( ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) ∧ 𝑢 ∈ ( Base ‘ 𝐸 ) ) → 𝑢 ∈ ( Base ‘ 𝐹 ) ) |
193 |
192
|
ex |
⊢ ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) → ( 𝑢 ∈ ( Base ‘ 𝐸 ) → 𝑢 ∈ ( Base ‘ 𝐹 ) ) ) |
194 |
193
|
ssrdv |
⊢ ( ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) ∧ 𝑏 = { 𝑥 } ) → ( Base ‘ 𝐸 ) ⊆ ( Base ‘ 𝐹 ) ) |
195 |
21 194
|
exlimddv |
⊢ ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) → ( Base ‘ 𝐸 ) ⊆ ( Base ‘ 𝐹 ) ) |
196 |
9 195
|
exlimddv |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) → ( Base ‘ 𝐸 ) ⊆ ( Base ‘ 𝐹 ) ) |
197 |
|
simpr |
⊢ ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ ( Base ‘ 𝐸 ) ⊆ ( Base ‘ 𝐹 ) ) → ( Base ‘ 𝐸 ) ⊆ ( Base ‘ 𝐹 ) ) |
198 |
37
|
ad2antrr |
⊢ ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ ( Base ‘ 𝐸 ) ⊆ ( Base ‘ 𝐹 ) ) → 𝐸 ∈ Field ) |
199 |
|
fvexd |
⊢ ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ ( Base ‘ 𝐸 ) ⊆ ( Base ‘ 𝐹 ) ) → ( Base ‘ 𝐹 ) ∈ V ) |
200 |
43 27
|
ressid2 |
⊢ ( ( ( Base ‘ 𝐸 ) ⊆ ( Base ‘ 𝐹 ) ∧ 𝐸 ∈ Field ∧ ( Base ‘ 𝐹 ) ∈ V ) → ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) = 𝐸 ) |
201 |
197 198 199 200
|
syl3anc |
⊢ ( ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) ∧ ( Base ‘ 𝐸 ) ⊆ ( Base ‘ 𝐹 ) ) → ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) = 𝐸 ) |
202 |
196 201
|
mpdan |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) → ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) = 𝐸 ) |
203 |
2 202
|
eqtr2d |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) → 𝐸 = 𝐹 ) |