Step |
Hyp |
Ref |
Expression |
1 |
|
fldextsubrg.1 |
⊢ 𝑈 = ( Base ‘ 𝐹 ) |
2 |
|
fldextfld1 |
⊢ ( 𝐸 /FldExt 𝐹 → 𝐸 ∈ Field ) |
3 |
|
fldextfld2 |
⊢ ( 𝐸 /FldExt 𝐹 → 𝐹 ∈ Field ) |
4 |
|
brfldext |
⊢ ( ( 𝐸 ∈ Field ∧ 𝐹 ∈ Field ) → ( 𝐸 /FldExt 𝐹 ↔ ( 𝐹 = ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ∧ ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ 𝐸 ) ) ) ) |
5 |
2 3 4
|
syl2anc |
⊢ ( 𝐸 /FldExt 𝐹 → ( 𝐸 /FldExt 𝐹 ↔ ( 𝐹 = ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ∧ ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ 𝐸 ) ) ) ) |
6 |
5
|
ibi |
⊢ ( 𝐸 /FldExt 𝐹 → ( 𝐹 = ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ∧ ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ 𝐸 ) ) ) |
7 |
6
|
simprd |
⊢ ( 𝐸 /FldExt 𝐹 → ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ 𝐸 ) ) |
8 |
1 7
|
eqeltrid |
⊢ ( 𝐸 /FldExt 𝐹 → 𝑈 ∈ ( SubRing ‘ 𝐸 ) ) |