Description: Field extension implies a structure restriction relation. (Contributed by Thierry Arnoux, 29-Jul-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fldextress | ⊢ ( 𝐸 /FldExt 𝐹 → 𝐹 = ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fldextfld1 | ⊢ ( 𝐸 /FldExt 𝐹 → 𝐸 ∈ Field ) | |
| 2 | fldextfld2 | ⊢ ( 𝐸 /FldExt 𝐹 → 𝐹 ∈ Field ) | |
| 3 | brfldext | ⊢ ( ( 𝐸 ∈ Field ∧ 𝐹 ∈ Field ) → ( 𝐸 /FldExt 𝐹 ↔ ( 𝐹 = ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ∧ ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ 𝐸 ) ) ) ) | |
| 4 | 1 2 3 | syl2anc | ⊢ ( 𝐸 /FldExt 𝐹 → ( 𝐸 /FldExt 𝐹 ↔ ( 𝐹 = ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ∧ ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ 𝐸 ) ) ) ) |
| 5 | 4 | ibi | ⊢ ( 𝐸 /FldExt 𝐹 → ( 𝐹 = ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ∧ ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ 𝐸 ) ) ) |
| 6 | 5 | simpld | ⊢ ( 𝐸 /FldExt 𝐹 → 𝐹 = ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ) |