Metamath Proof Explorer


Theorem fldextress

Description: Field extension implies a structure restriction relation. (Contributed by Thierry Arnoux, 29-Jul-2023)

Ref Expression
Assertion fldextress E /FldExt F F = E 𝑠 Base F

Proof

Step Hyp Ref Expression
1 fldextfld1 E /FldExt F E Field
2 fldextfld2 E /FldExt F F Field
3 brfldext E Field F Field E /FldExt F F = E 𝑠 Base F Base F SubRing E
4 1 2 3 syl2anc E /FldExt F E /FldExt F F = E 𝑠 Base F Base F SubRing E
5 4 ibi E /FldExt F F = E 𝑠 Base F Base F SubRing E
6 5 simpld E /FldExt F F = E 𝑠 Base F