Metamath Proof Explorer


Theorem brfldext

Description: The field extension relation explicited. (Contributed by Thierry Arnoux, 29-Jul-2023)

Ref Expression
Assertion brfldext E Field F Field E /FldExt F F = E 𝑠 Base F Base F SubRing E

Proof

Step Hyp Ref Expression
1 simpl e = E f = F e = E
2 1 eleq1d e = E f = F e Field E Field
3 simpr e = E f = F f = F
4 3 eleq1d e = E f = F f Field F Field
5 2 4 anbi12d e = E f = F e Field f Field E Field F Field
6 3 fveq2d e = E f = F Base f = Base F
7 1 6 oveq12d e = E f = F e 𝑠 Base f = E 𝑠 Base F
8 3 7 eqeq12d e = E f = F f = e 𝑠 Base f F = E 𝑠 Base F
9 1 fveq2d e = E f = F SubRing e = SubRing E
10 6 9 eleq12d e = E f = F Base f SubRing e Base F SubRing E
11 8 10 anbi12d e = E f = F f = e 𝑠 Base f Base f SubRing e F = E 𝑠 Base F Base F SubRing E
12 5 11 anbi12d e = E f = F e Field f Field f = e 𝑠 Base f Base f SubRing e E Field F Field F = E 𝑠 Base F Base F SubRing E
13 df-fldext /FldExt = e f | e Field f Field f = e 𝑠 Base f Base f SubRing e
14 12 13 brabga E Field F Field E /FldExt F E Field F Field F = E 𝑠 Base F Base F SubRing E
15 14 bianabs E Field F Field E /FldExt F F = E 𝑠 Base F Base F SubRing E