Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Field Extensions
brfldext
Next ⟩
ccfldextrr
Metamath Proof Explorer
Ascii
Unicode
Theorem
brfldext
Description:
The field extension relation explicited.
(Contributed by
Thierry Arnoux
, 29-Jul-2023)
Ref
Expression
Assertion
brfldext
⊢
E
∈
Field
∧
F
∈
Field
→
E
/
FldExt
F
↔
F
=
E
↾
𝑠
Base
F
∧
Base
F
∈
SubRing
⁡
E
Proof
Step
Hyp
Ref
Expression
1
simpl
⊢
e
=
E
∧
f
=
F
→
e
=
E
2
1
eleq1d
⊢
e
=
E
∧
f
=
F
→
e
∈
Field
↔
E
∈
Field
3
simpr
⊢
e
=
E
∧
f
=
F
→
f
=
F
4
3
eleq1d
⊢
e
=
E
∧
f
=
F
→
f
∈
Field
↔
F
∈
Field
5
2
4
anbi12d
⊢
e
=
E
∧
f
=
F
→
e
∈
Field
∧
f
∈
Field
↔
E
∈
Field
∧
F
∈
Field
6
3
fveq2d
⊢
e
=
E
∧
f
=
F
→
Base
f
=
Base
F
7
1
6
oveq12d
⊢
e
=
E
∧
f
=
F
→
e
↾
𝑠
Base
f
=
E
↾
𝑠
Base
F
8
3
7
eqeq12d
⊢
e
=
E
∧
f
=
F
→
f
=
e
↾
𝑠
Base
f
↔
F
=
E
↾
𝑠
Base
F
9
1
fveq2d
⊢
e
=
E
∧
f
=
F
→
SubRing
⁡
e
=
SubRing
⁡
E
10
6
9
eleq12d
⊢
e
=
E
∧
f
=
F
→
Base
f
∈
SubRing
⁡
e
↔
Base
F
∈
SubRing
⁡
E
11
8
10
anbi12d
⊢
e
=
E
∧
f
=
F
→
f
=
e
↾
𝑠
Base
f
∧
Base
f
∈
SubRing
⁡
e
↔
F
=
E
↾
𝑠
Base
F
∧
Base
F
∈
SubRing
⁡
E
12
5
11
anbi12d
⊢
e
=
E
∧
f
=
F
→
e
∈
Field
∧
f
∈
Field
∧
f
=
e
↾
𝑠
Base
f
∧
Base
f
∈
SubRing
⁡
e
↔
E
∈
Field
∧
F
∈
Field
∧
F
=
E
↾
𝑠
Base
F
∧
Base
F
∈
SubRing
⁡
E
13
df-fldext
⊢
/
FldExt
=
e
f
|
e
∈
Field
∧
f
∈
Field
∧
f
=
e
↾
𝑠
Base
f
∧
Base
f
∈
SubRing
⁡
e
14
12
13
brabga
⊢
E
∈
Field
∧
F
∈
Field
→
E
/
FldExt
F
↔
E
∈
Field
∧
F
∈
Field
∧
F
=
E
↾
𝑠
Base
F
∧
Base
F
∈
SubRing
⁡
E
15
14
bianabs
⊢
E
∈
Field
∧
F
∈
Field
→
E
/
FldExt
F
↔
F
=
E
↾
𝑠
Base
F
∧
Base
F
∈
SubRing
⁡
E