Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( e = E /\ f = F ) -> e = E ) |
2 |
1
|
eleq1d |
|- ( ( e = E /\ f = F ) -> ( e e. Field <-> E e. Field ) ) |
3 |
|
simpr |
|- ( ( e = E /\ f = F ) -> f = F ) |
4 |
3
|
eleq1d |
|- ( ( e = E /\ f = F ) -> ( f e. Field <-> F e. Field ) ) |
5 |
2 4
|
anbi12d |
|- ( ( e = E /\ f = F ) -> ( ( e e. Field /\ f e. Field ) <-> ( E e. Field /\ F e. Field ) ) ) |
6 |
3
|
fveq2d |
|- ( ( e = E /\ f = F ) -> ( Base ` f ) = ( Base ` F ) ) |
7 |
1 6
|
oveq12d |
|- ( ( e = E /\ f = F ) -> ( e |`s ( Base ` f ) ) = ( E |`s ( Base ` F ) ) ) |
8 |
3 7
|
eqeq12d |
|- ( ( e = E /\ f = F ) -> ( f = ( e |`s ( Base ` f ) ) <-> F = ( E |`s ( Base ` F ) ) ) ) |
9 |
1
|
fveq2d |
|- ( ( e = E /\ f = F ) -> ( SubRing ` e ) = ( SubRing ` E ) ) |
10 |
6 9
|
eleq12d |
|- ( ( e = E /\ f = F ) -> ( ( Base ` f ) e. ( SubRing ` e ) <-> ( Base ` F ) e. ( SubRing ` E ) ) ) |
11 |
8 10
|
anbi12d |
|- ( ( e = E /\ f = F ) -> ( ( f = ( e |`s ( Base ` f ) ) /\ ( Base ` f ) e. ( SubRing ` e ) ) <-> ( F = ( E |`s ( Base ` F ) ) /\ ( Base ` F ) e. ( SubRing ` E ) ) ) ) |
12 |
5 11
|
anbi12d |
|- ( ( e = E /\ f = F ) -> ( ( ( e e. Field /\ f e. Field ) /\ ( f = ( e |`s ( Base ` f ) ) /\ ( Base ` f ) e. ( SubRing ` e ) ) ) <-> ( ( E e. Field /\ F e. Field ) /\ ( F = ( E |`s ( Base ` F ) ) /\ ( Base ` F ) e. ( SubRing ` E ) ) ) ) ) |
13 |
|
df-fldext |
|- /FldExt = { <. e , f >. | ( ( e e. Field /\ f e. Field ) /\ ( f = ( e |`s ( Base ` f ) ) /\ ( Base ` f ) e. ( SubRing ` e ) ) ) } |
14 |
12 13
|
brabga |
|- ( ( E e. Field /\ F e. Field ) -> ( E /FldExt F <-> ( ( E e. Field /\ F e. Field ) /\ ( F = ( E |`s ( Base ` F ) ) /\ ( Base ` F ) e. ( SubRing ` E ) ) ) ) ) |
15 |
14
|
bianabs |
|- ( ( E e. Field /\ F e. Field ) -> ( E /FldExt F <-> ( F = ( E |`s ( Base ` F ) ) /\ ( Base ` F ) e. ( SubRing ` E ) ) ) ) |