| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cfldext |
|- /FldExt |
| 1 |
|
ve |
|- e |
| 2 |
|
vf |
|- f |
| 3 |
1
|
cv |
|- e |
| 4 |
|
cfield |
|- Field |
| 5 |
3 4
|
wcel |
|- e e. Field |
| 6 |
2
|
cv |
|- f |
| 7 |
6 4
|
wcel |
|- f e. Field |
| 8 |
5 7
|
wa |
|- ( e e. Field /\ f e. Field ) |
| 9 |
|
cress |
|- |`s |
| 10 |
|
cbs |
|- Base |
| 11 |
6 10
|
cfv |
|- ( Base ` f ) |
| 12 |
3 11 9
|
co |
|- ( e |`s ( Base ` f ) ) |
| 13 |
6 12
|
wceq |
|- f = ( e |`s ( Base ` f ) ) |
| 14 |
|
csubrg |
|- SubRing |
| 15 |
3 14
|
cfv |
|- ( SubRing ` e ) |
| 16 |
11 15
|
wcel |
|- ( Base ` f ) e. ( SubRing ` e ) |
| 17 |
13 16
|
wa |
|- ( f = ( e |`s ( Base ` f ) ) /\ ( Base ` f ) e. ( SubRing ` e ) ) |
| 18 |
8 17
|
wa |
|- ( ( e e. Field /\ f e. Field ) /\ ( f = ( e |`s ( Base ` f ) ) /\ ( Base ` f ) e. ( SubRing ` e ) ) ) |
| 19 |
18 1 2
|
copab |
|- { <. e , f >. | ( ( e e. Field /\ f e. Field ) /\ ( f = ( e |`s ( Base ` f ) ) /\ ( Base ` f ) e. ( SubRing ` e ) ) ) } |
| 20 |
0 19
|
wceq |
|- /FldExt = { <. e , f >. | ( ( e e. Field /\ f e. Field ) /\ ( f = ( e |`s ( Base ` f ) ) /\ ( Base ` f ) e. ( SubRing ` e ) ) ) } |