Metamath Proof Explorer


Definition df-fldext

Description: Definition of the field extension relation. (Contributed by Thierry Arnoux, 29-Jul-2023)

Ref Expression
Assertion df-fldext /FldExt = { ⟨ 𝑒 , 𝑓 ⟩ ∣ ( ( 𝑒 ∈ Field ∧ 𝑓 ∈ Field ) ∧ ( 𝑓 = ( 𝑒s ( Base ‘ 𝑓 ) ) ∧ ( Base ‘ 𝑓 ) ∈ ( SubRing ‘ 𝑒 ) ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfldext /FldExt
1 ve 𝑒
2 vf 𝑓
3 1 cv 𝑒
4 cfield Field
5 3 4 wcel 𝑒 ∈ Field
6 2 cv 𝑓
7 6 4 wcel 𝑓 ∈ Field
8 5 7 wa ( 𝑒 ∈ Field ∧ 𝑓 ∈ Field )
9 cress s
10 cbs Base
11 6 10 cfv ( Base ‘ 𝑓 )
12 3 11 9 co ( 𝑒s ( Base ‘ 𝑓 ) )
13 6 12 wceq 𝑓 = ( 𝑒s ( Base ‘ 𝑓 ) )
14 csubrg SubRing
15 3 14 cfv ( SubRing ‘ 𝑒 )
16 11 15 wcel ( Base ‘ 𝑓 ) ∈ ( SubRing ‘ 𝑒 )
17 13 16 wa ( 𝑓 = ( 𝑒s ( Base ‘ 𝑓 ) ) ∧ ( Base ‘ 𝑓 ) ∈ ( SubRing ‘ 𝑒 ) )
18 8 17 wa ( ( 𝑒 ∈ Field ∧ 𝑓 ∈ Field ) ∧ ( 𝑓 = ( 𝑒s ( Base ‘ 𝑓 ) ) ∧ ( Base ‘ 𝑓 ) ∈ ( SubRing ‘ 𝑒 ) ) )
19 18 1 2 copab { ⟨ 𝑒 , 𝑓 ⟩ ∣ ( ( 𝑒 ∈ Field ∧ 𝑓 ∈ Field ) ∧ ( 𝑓 = ( 𝑒s ( Base ‘ 𝑓 ) ) ∧ ( Base ‘ 𝑓 ) ∈ ( SubRing ‘ 𝑒 ) ) ) }
20 0 19 wceq /FldExt = { ⟨ 𝑒 , 𝑓 ⟩ ∣ ( ( 𝑒 ∈ Field ∧ 𝑓 ∈ Field ) ∧ ( 𝑓 = ( 𝑒s ( Base ‘ 𝑓 ) ) ∧ ( Base ‘ 𝑓 ) ∈ ( SubRing ‘ 𝑒 ) ) ) }