| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cfldext |
⊢ /FldExt |
| 1 |
|
ve |
⊢ 𝑒 |
| 2 |
|
vf |
⊢ 𝑓 |
| 3 |
1
|
cv |
⊢ 𝑒 |
| 4 |
|
cfield |
⊢ Field |
| 5 |
3 4
|
wcel |
⊢ 𝑒 ∈ Field |
| 6 |
2
|
cv |
⊢ 𝑓 |
| 7 |
6 4
|
wcel |
⊢ 𝑓 ∈ Field |
| 8 |
5 7
|
wa |
⊢ ( 𝑒 ∈ Field ∧ 𝑓 ∈ Field ) |
| 9 |
|
cress |
⊢ ↾s |
| 10 |
|
cbs |
⊢ Base |
| 11 |
6 10
|
cfv |
⊢ ( Base ‘ 𝑓 ) |
| 12 |
3 11 9
|
co |
⊢ ( 𝑒 ↾s ( Base ‘ 𝑓 ) ) |
| 13 |
6 12
|
wceq |
⊢ 𝑓 = ( 𝑒 ↾s ( Base ‘ 𝑓 ) ) |
| 14 |
|
csubrg |
⊢ SubRing |
| 15 |
3 14
|
cfv |
⊢ ( SubRing ‘ 𝑒 ) |
| 16 |
11 15
|
wcel |
⊢ ( Base ‘ 𝑓 ) ∈ ( SubRing ‘ 𝑒 ) |
| 17 |
13 16
|
wa |
⊢ ( 𝑓 = ( 𝑒 ↾s ( Base ‘ 𝑓 ) ) ∧ ( Base ‘ 𝑓 ) ∈ ( SubRing ‘ 𝑒 ) ) |
| 18 |
8 17
|
wa |
⊢ ( ( 𝑒 ∈ Field ∧ 𝑓 ∈ Field ) ∧ ( 𝑓 = ( 𝑒 ↾s ( Base ‘ 𝑓 ) ) ∧ ( Base ‘ 𝑓 ) ∈ ( SubRing ‘ 𝑒 ) ) ) |
| 19 |
18 1 2
|
copab |
⊢ { 〈 𝑒 , 𝑓 〉 ∣ ( ( 𝑒 ∈ Field ∧ 𝑓 ∈ Field ) ∧ ( 𝑓 = ( 𝑒 ↾s ( Base ‘ 𝑓 ) ) ∧ ( Base ‘ 𝑓 ) ∈ ( SubRing ‘ 𝑒 ) ) ) } |
| 20 |
0 19
|
wceq |
⊢ /FldExt = { 〈 𝑒 , 𝑓 〉 ∣ ( ( 𝑒 ∈ Field ∧ 𝑓 ∈ Field ) ∧ ( 𝑓 = ( 𝑒 ↾s ( Base ‘ 𝑓 ) ) ∧ ( Base ‘ 𝑓 ) ∈ ( SubRing ‘ 𝑒 ) ) ) } |