Metamath Proof Explorer


Definition df-extdg

Description: Definition of the field extension degree operation. (Contributed by Thierry Arnoux, 29-Jul-2023)

Ref Expression
Assertion df-extdg
|- [:] = ( e e. _V , f e. ( /FldExt " { e } ) |-> ( dim ` ( ( subringAlg ` e ) ` ( Base ` f ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cextdg
 |-  [:]
1 ve
 |-  e
2 cvv
 |-  _V
3 vf
 |-  f
4 cfldext
 |-  /FldExt
5 1 cv
 |-  e
6 5 csn
 |-  { e }
7 4 6 cima
 |-  ( /FldExt " { e } )
8 cldim
 |-  dim
9 csra
 |-  subringAlg
10 5 9 cfv
 |-  ( subringAlg ` e )
11 cbs
 |-  Base
12 3 cv
 |-  f
13 12 11 cfv
 |-  ( Base ` f )
14 13 10 cfv
 |-  ( ( subringAlg ` e ) ` ( Base ` f ) )
15 14 8 cfv
 |-  ( dim ` ( ( subringAlg ` e ) ` ( Base ` f ) ) )
16 1 3 2 7 15 cmpo
 |-  ( e e. _V , f e. ( /FldExt " { e } ) |-> ( dim ` ( ( subringAlg ` e ) ` ( Base ` f ) ) ) )
17 0 16 wceq
 |-  [:] = ( e e. _V , f e. ( /FldExt " { e } ) |-> ( dim ` ( ( subringAlg ` e ) ` ( Base ` f ) ) ) )