Description: Definition of the field extension degree operation. (Contributed by Thierry Arnoux, 29-Jul-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-extdg | |- [:] = ( e e. _V , f e. ( /FldExt " { e } ) |-> ( dim ` ( ( subringAlg ` e ) ` ( Base ` f ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cextdg | |- [:] |
|
| 1 | ve | |- e |
|
| 2 | cvv | |- _V |
|
| 3 | vf | |- f |
|
| 4 | cfldext | |- /FldExt |
|
| 5 | 1 | cv | |- e |
| 6 | 5 | csn | |- { e } |
| 7 | 4 6 | cima | |- ( /FldExt " { e } ) |
| 8 | cldim | |- dim |
|
| 9 | csra | |- subringAlg |
|
| 10 | 5 9 | cfv | |- ( subringAlg ` e ) |
| 11 | cbs | |- Base |
|
| 12 | 3 | cv | |- f |
| 13 | 12 11 | cfv | |- ( Base ` f ) |
| 14 | 13 10 | cfv | |- ( ( subringAlg ` e ) ` ( Base ` f ) ) |
| 15 | 14 8 | cfv | |- ( dim ` ( ( subringAlg ` e ) ` ( Base ` f ) ) ) |
| 16 | 1 3 2 7 15 | cmpo | |- ( e e. _V , f e. ( /FldExt " { e } ) |-> ( dim ` ( ( subringAlg ` e ) ` ( Base ` f ) ) ) ) |
| 17 | 0 16 | wceq | |- [:] = ( e e. _V , f e. ( /FldExt " { e } ) |-> ( dim ` ( ( subringAlg ` e ) ` ( Base ` f ) ) ) ) |