Description: Definition of the field extension degree operation. (Contributed by Thierry Arnoux, 29-Jul-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | df-extdg | |- [:] = ( e e. _V , f e. ( /FldExt " { e } ) |-> ( dim ` ( ( subringAlg ` e ) ` ( Base ` f ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cextdg | |- [:] |
|
1 | ve | |- e |
|
2 | cvv | |- _V |
|
3 | vf | |- f |
|
4 | cfldext | |- /FldExt |
|
5 | 1 | cv | |- e |
6 | 5 | csn | |- { e } |
7 | 4 6 | cima | |- ( /FldExt " { e } ) |
8 | cldim | |- dim |
|
9 | csra | |- subringAlg |
|
10 | 5 9 | cfv | |- ( subringAlg ` e ) |
11 | cbs | |- Base |
|
12 | 3 | cv | |- f |
13 | 12 11 | cfv | |- ( Base ` f ) |
14 | 13 10 | cfv | |- ( ( subringAlg ` e ) ` ( Base ` f ) ) |
15 | 14 8 | cfv | |- ( dim ` ( ( subringAlg ` e ) ` ( Base ` f ) ) ) |
16 | 1 3 2 7 15 | cmpo | |- ( e e. _V , f e. ( /FldExt " { e } ) |-> ( dim ` ( ( subringAlg ` e ) ` ( Base ` f ) ) ) ) |
17 | 0 16 | wceq | |- [:] = ( e e. _V , f e. ( /FldExt " { e } ) |-> ( dim ` ( ( subringAlg ` e ) ` ( Base ` f ) ) ) ) |