Metamath Proof Explorer


Definition df-extdg

Description: Definition of the field extension degree operation. (Contributed by Thierry Arnoux, 29-Jul-2023)

Ref Expression
Assertion df-extdg .:. = e V , f /FldExt e dim subringAlg e Base f

Detailed syntax breakdown

Step Hyp Ref Expression
0 cextdg class .:.
1 ve setvar e
2 cvv class V
3 vf setvar f
4 cfldext class /FldExt
5 1 cv setvar e
6 5 csn class e
7 4 6 cima class /FldExt e
8 cldim class dim
9 csra class subringAlg
10 5 9 cfv class subringAlg e
11 cbs class Base
12 3 cv setvar f
13 12 11 cfv class Base f
14 13 10 cfv class subringAlg e Base f
15 14 8 cfv class dim subringAlg e Base f
16 1 3 2 7 15 cmpo class e V , f /FldExt e dim subringAlg e Base f
17 0 16 wceq wff .:. = e V , f /FldExt e dim subringAlg e Base f