Metamath Proof Explorer


Definition df-finext

Description: Definition of the finite field extension relation. (Contributed by Thierry Arnoux, 29-Jul-2023)

Ref Expression
Assertion df-finext /FinExt = e f | e /FldExt f e .:. f 0

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfinext class /FinExt
1 ve setvar e
2 vf setvar f
3 1 cv setvar e
4 cfldext class /FldExt
5 2 cv setvar f
6 3 5 4 wbr wff e /FldExt f
7 cextdg class .:.
8 3 5 7 co class e : f
9 cn0 class 0
10 8 9 wcel wff e .:. f 0
11 6 10 wa wff e /FldExt f e .:. f 0
12 11 1 2 copab class e f | e /FldExt f e .:. f 0
13 0 12 wceq wff /FinExt = e f | e /FldExt f e .:. f 0