Metamath Proof Explorer


Definition df-finext

Description: Definition of the finite field extension relation. (Contributed by Thierry Arnoux, 29-Jul-2023)

Ref Expression
Assertion df-finext
|- /FinExt = { <. e , f >. | ( e /FldExt f /\ ( e [:] f ) e. NN0 ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfinext
 |-  /FinExt
1 ve
 |-  e
2 vf
 |-  f
3 1 cv
 |-  e
4 cfldext
 |-  /FldExt
5 2 cv
 |-  f
6 3 5 4 wbr
 |-  e /FldExt f
7 cextdg
 |-  [:]
8 3 5 7 co
 |-  ( e [:] f )
9 cn0
 |-  NN0
10 8 9 wcel
 |-  ( e [:] f ) e. NN0
11 6 10 wa
 |-  ( e /FldExt f /\ ( e [:] f ) e. NN0 )
12 11 1 2 copab
 |-  { <. e , f >. | ( e /FldExt f /\ ( e [:] f ) e. NN0 ) }
13 0 12 wceq
 |-  /FinExt = { <. e , f >. | ( e /FldExt f /\ ( e [:] f ) e. NN0 ) }