Description: Definition of the finite field extension relation. (Contributed by Thierry Arnoux, 29-Jul-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | df-finext | |- /FinExt = { <. e , f >. | ( e /FldExt f /\ ( e [:] f ) e. NN0 ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cfinext | |- /FinExt |
|
1 | ve | |- e |
|
2 | vf | |- f |
|
3 | 1 | cv | |- e |
4 | cfldext | |- /FldExt |
|
5 | 2 | cv | |- f |
6 | 3 5 4 | wbr | |- e /FldExt f |
7 | cextdg | |- [:] |
|
8 | 3 5 7 | co | |- ( e [:] f ) |
9 | cn0 | |- NN0 |
|
10 | 8 9 | wcel | |- ( e [:] f ) e. NN0 |
11 | 6 10 | wa | |- ( e /FldExt f /\ ( e [:] f ) e. NN0 ) |
12 | 11 1 2 | copab | |- { <. e , f >. | ( e /FldExt f /\ ( e [:] f ) e. NN0 ) } |
13 | 0 12 | wceq | |- /FinExt = { <. e , f >. | ( e /FldExt f /\ ( e [:] f ) e. NN0 ) } |