Metamath Proof Explorer


Definition df-algext

Description: Definition of the algebraic extension relation. (Contributed by Thierry Arnoux, 29-Jul-2023)

Ref Expression
Assertion df-algext
|- /AlgExt = { <. e , f >. | ( e /FldExt f /\ ( e IntgRing ( Base ` f ) ) = ( Base ` e ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 calgext
 |-  /AlgExt
1 ve
 |-  e
2 vf
 |-  f
3 1 cv
 |-  e
4 cfldext
 |-  /FldExt
5 2 cv
 |-  f
6 3 5 4 wbr
 |-  e /FldExt f
7 cirng
 |-  IntgRing
8 cbs
 |-  Base
9 5 8 cfv
 |-  ( Base ` f )
10 3 9 7 co
 |-  ( e IntgRing ( Base ` f ) )
11 3 8 cfv
 |-  ( Base ` e )
12 10 11 wceq
 |-  ( e IntgRing ( Base ` f ) ) = ( Base ` e )
13 6 12 wa
 |-  ( e /FldExt f /\ ( e IntgRing ( Base ` f ) ) = ( Base ` e ) )
14 13 1 2 copab
 |-  { <. e , f >. | ( e /FldExt f /\ ( e IntgRing ( Base ` f ) ) = ( Base ` e ) ) }
15 0 14 wceq
 |-  /AlgExt = { <. e , f >. | ( e /FldExt f /\ ( e IntgRing ( Base ` f ) ) = ( Base ` e ) ) }