Step |
Hyp |
Ref |
Expression |
0 |
|
calgext |
|- /AlgExt |
1 |
|
ve |
|- e |
2 |
|
vf |
|- f |
3 |
1
|
cv |
|- e |
4 |
|
cfldext |
|- /FldExt |
5 |
2
|
cv |
|- f |
6 |
3 5 4
|
wbr |
|- e /FldExt f |
7 |
|
vx |
|- x |
8 |
|
cbs |
|- Base |
9 |
3 8
|
cfv |
|- ( Base ` e ) |
10 |
|
vp |
|- p |
11 |
|
cpl1 |
|- Poly1 |
12 |
5 11
|
cfv |
|- ( Poly1 ` f ) |
13 |
|
ce1 |
|- eval1 |
14 |
5 13
|
cfv |
|- ( eval1 ` f ) |
15 |
10
|
cv |
|- p |
16 |
15 14
|
cfv |
|- ( ( eval1 ` f ) ` p ) |
17 |
7
|
cv |
|- x |
18 |
17 16
|
cfv |
|- ( ( ( eval1 ` f ) ` p ) ` x ) |
19 |
|
c0g |
|- 0g |
20 |
3 19
|
cfv |
|- ( 0g ` e ) |
21 |
18 20
|
wceq |
|- ( ( ( eval1 ` f ) ` p ) ` x ) = ( 0g ` e ) |
22 |
21 10 12
|
wrex |
|- E. p e. ( Poly1 ` f ) ( ( ( eval1 ` f ) ` p ) ` x ) = ( 0g ` e ) |
23 |
22 7 9
|
wral |
|- A. x e. ( Base ` e ) E. p e. ( Poly1 ` f ) ( ( ( eval1 ` f ) ` p ) ` x ) = ( 0g ` e ) |
24 |
6 23
|
wa |
|- ( e /FldExt f /\ A. x e. ( Base ` e ) E. p e. ( Poly1 ` f ) ( ( ( eval1 ` f ) ` p ) ` x ) = ( 0g ` e ) ) |
25 |
24 1 2
|
copab |
|- { <. e , f >. | ( e /FldExt f /\ A. x e. ( Base ` e ) E. p e. ( Poly1 ` f ) ( ( ( eval1 ` f ) ` p ) ` x ) = ( 0g ` e ) ) } |
26 |
0 25
|
wceq |
|- /AlgExt = { <. e , f >. | ( e /FldExt f /\ A. x e. ( Base ` e ) E. p e. ( Poly1 ` f ) ( ( ( eval1 ` f ) ` p ) ` x ) = ( 0g ` e ) ) } |