Description: Definition of the algebraic extension relation. (Contributed by Thierry Arnoux, 29-Jul-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-algext | |- /AlgExt = { <. e , f >. | ( e /FldExt f /\ ( e IntgRing ( Base ` f ) ) = ( Base ` e ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | calgext | |- /AlgExt |
|
| 1 | ve | |- e |
|
| 2 | vf | |- f |
|
| 3 | 1 | cv | |- e |
| 4 | cfldext | |- /FldExt |
|
| 5 | 2 | cv | |- f |
| 6 | 3 5 4 | wbr | |- e /FldExt f |
| 7 | cirng | |- IntgRing |
|
| 8 | cbs | |- Base |
|
| 9 | 5 8 | cfv | |- ( Base ` f ) |
| 10 | 3 9 7 | co | |- ( e IntgRing ( Base ` f ) ) |
| 11 | 3 8 | cfv | |- ( Base ` e ) |
| 12 | 10 11 | wceq | |- ( e IntgRing ( Base ` f ) ) = ( Base ` e ) |
| 13 | 6 12 | wa | |- ( e /FldExt f /\ ( e IntgRing ( Base ` f ) ) = ( Base ` e ) ) |
| 14 | 13 1 2 | copab | |- { <. e , f >. | ( e /FldExt f /\ ( e IntgRing ( Base ` f ) ) = ( Base ` e ) ) } |
| 15 | 0 14 | wceq | |- /AlgExt = { <. e , f >. | ( e /FldExt f /\ ( e IntgRing ( Base ` f ) ) = ( Base ` e ) ) } |