| Step |
Hyp |
Ref |
Expression |
| 0 |
|
calgext |
⊢ /AlgExt |
| 1 |
|
ve |
⊢ 𝑒 |
| 2 |
|
vf |
⊢ 𝑓 |
| 3 |
1
|
cv |
⊢ 𝑒 |
| 4 |
|
cfldext |
⊢ /FldExt |
| 5 |
2
|
cv |
⊢ 𝑓 |
| 6 |
3 5 4
|
wbr |
⊢ 𝑒 /FldExt 𝑓 |
| 7 |
|
cirng |
⊢ IntgRing |
| 8 |
|
cbs |
⊢ Base |
| 9 |
5 8
|
cfv |
⊢ ( Base ‘ 𝑓 ) |
| 10 |
3 9 7
|
co |
⊢ ( 𝑒 IntgRing ( Base ‘ 𝑓 ) ) |
| 11 |
3 8
|
cfv |
⊢ ( Base ‘ 𝑒 ) |
| 12 |
10 11
|
wceq |
⊢ ( 𝑒 IntgRing ( Base ‘ 𝑓 ) ) = ( Base ‘ 𝑒 ) |
| 13 |
6 12
|
wa |
⊢ ( 𝑒 /FldExt 𝑓 ∧ ( 𝑒 IntgRing ( Base ‘ 𝑓 ) ) = ( Base ‘ 𝑒 ) ) |
| 14 |
13 1 2
|
copab |
⊢ { 〈 𝑒 , 𝑓 〉 ∣ ( 𝑒 /FldExt 𝑓 ∧ ( 𝑒 IntgRing ( Base ‘ 𝑓 ) ) = ( Base ‘ 𝑒 ) ) } |
| 15 |
0 14
|
wceq |
⊢ /AlgExt = { 〈 𝑒 , 𝑓 〉 ∣ ( 𝑒 /FldExt 𝑓 ∧ ( 𝑒 IntgRing ( Base ‘ 𝑓 ) ) = ( Base ‘ 𝑒 ) ) } |