Metamath Proof Explorer


Definition df-algext

Description: Definition of the algebraic extension relation. (Contributed by Thierry Arnoux, 29-Jul-2023)

Ref Expression
Assertion df-algext /AlgExt = { ⟨ 𝑒 , 𝑓 ⟩ ∣ ( 𝑒 /FldExt 𝑓 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑒 ) ∃ 𝑝 ∈ ( Poly1𝑓 ) ( ( ( eval1𝑓 ) ‘ 𝑝 ) ‘ 𝑥 ) = ( 0g𝑒 ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 calgext /AlgExt
1 ve 𝑒
2 vf 𝑓
3 1 cv 𝑒
4 cfldext /FldExt
5 2 cv 𝑓
6 3 5 4 wbr 𝑒 /FldExt 𝑓
7 vx 𝑥
8 cbs Base
9 3 8 cfv ( Base ‘ 𝑒 )
10 vp 𝑝
11 cpl1 Poly1
12 5 11 cfv ( Poly1𝑓 )
13 ce1 eval1
14 5 13 cfv ( eval1𝑓 )
15 10 cv 𝑝
16 15 14 cfv ( ( eval1𝑓 ) ‘ 𝑝 )
17 7 cv 𝑥
18 17 16 cfv ( ( ( eval1𝑓 ) ‘ 𝑝 ) ‘ 𝑥 )
19 c0g 0g
20 3 19 cfv ( 0g𝑒 )
21 18 20 wceq ( ( ( eval1𝑓 ) ‘ 𝑝 ) ‘ 𝑥 ) = ( 0g𝑒 )
22 21 10 12 wrex 𝑝 ∈ ( Poly1𝑓 ) ( ( ( eval1𝑓 ) ‘ 𝑝 ) ‘ 𝑥 ) = ( 0g𝑒 )
23 22 7 9 wral 𝑥 ∈ ( Base ‘ 𝑒 ) ∃ 𝑝 ∈ ( Poly1𝑓 ) ( ( ( eval1𝑓 ) ‘ 𝑝 ) ‘ 𝑥 ) = ( 0g𝑒 )
24 6 23 wa ( 𝑒 /FldExt 𝑓 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑒 ) ∃ 𝑝 ∈ ( Poly1𝑓 ) ( ( ( eval1𝑓 ) ‘ 𝑝 ) ‘ 𝑥 ) = ( 0g𝑒 ) )
25 24 1 2 copab { ⟨ 𝑒 , 𝑓 ⟩ ∣ ( 𝑒 /FldExt 𝑓 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑒 ) ∃ 𝑝 ∈ ( Poly1𝑓 ) ( ( ( eval1𝑓 ) ‘ 𝑝 ) ‘ 𝑥 ) = ( 0g𝑒 ) ) }
26 0 25 wceq /AlgExt = { ⟨ 𝑒 , 𝑓 ⟩ ∣ ( 𝑒 /FldExt 𝑓 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑒 ) ∃ 𝑝 ∈ ( Poly1𝑓 ) ( ( ( eval1𝑓 ) ‘ 𝑝 ) ‘ 𝑥 ) = ( 0g𝑒 ) ) }