| Step |
Hyp |
Ref |
Expression |
| 0 |
|
calgext |
⊢ /AlgExt |
| 1 |
|
ve |
⊢ 𝑒 |
| 2 |
|
vf |
⊢ 𝑓 |
| 3 |
1
|
cv |
⊢ 𝑒 |
| 4 |
|
cfldext |
⊢ /FldExt |
| 5 |
2
|
cv |
⊢ 𝑓 |
| 6 |
3 5 4
|
wbr |
⊢ 𝑒 /FldExt 𝑓 |
| 7 |
|
vx |
⊢ 𝑥 |
| 8 |
|
cbs |
⊢ Base |
| 9 |
3 8
|
cfv |
⊢ ( Base ‘ 𝑒 ) |
| 10 |
|
vp |
⊢ 𝑝 |
| 11 |
|
cpl1 |
⊢ Poly1 |
| 12 |
5 11
|
cfv |
⊢ ( Poly1 ‘ 𝑓 ) |
| 13 |
|
ce1 |
⊢ eval1 |
| 14 |
5 13
|
cfv |
⊢ ( eval1 ‘ 𝑓 ) |
| 15 |
10
|
cv |
⊢ 𝑝 |
| 16 |
15 14
|
cfv |
⊢ ( ( eval1 ‘ 𝑓 ) ‘ 𝑝 ) |
| 17 |
7
|
cv |
⊢ 𝑥 |
| 18 |
17 16
|
cfv |
⊢ ( ( ( eval1 ‘ 𝑓 ) ‘ 𝑝 ) ‘ 𝑥 ) |
| 19 |
|
c0g |
⊢ 0g |
| 20 |
3 19
|
cfv |
⊢ ( 0g ‘ 𝑒 ) |
| 21 |
18 20
|
wceq |
⊢ ( ( ( eval1 ‘ 𝑓 ) ‘ 𝑝 ) ‘ 𝑥 ) = ( 0g ‘ 𝑒 ) |
| 22 |
21 10 12
|
wrex |
⊢ ∃ 𝑝 ∈ ( Poly1 ‘ 𝑓 ) ( ( ( eval1 ‘ 𝑓 ) ‘ 𝑝 ) ‘ 𝑥 ) = ( 0g ‘ 𝑒 ) |
| 23 |
22 7 9
|
wral |
⊢ ∀ 𝑥 ∈ ( Base ‘ 𝑒 ) ∃ 𝑝 ∈ ( Poly1 ‘ 𝑓 ) ( ( ( eval1 ‘ 𝑓 ) ‘ 𝑝 ) ‘ 𝑥 ) = ( 0g ‘ 𝑒 ) |
| 24 |
6 23
|
wa |
⊢ ( 𝑒 /FldExt 𝑓 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑒 ) ∃ 𝑝 ∈ ( Poly1 ‘ 𝑓 ) ( ( ( eval1 ‘ 𝑓 ) ‘ 𝑝 ) ‘ 𝑥 ) = ( 0g ‘ 𝑒 ) ) |
| 25 |
24 1 2
|
copab |
⊢ { 〈 𝑒 , 𝑓 〉 ∣ ( 𝑒 /FldExt 𝑓 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑒 ) ∃ 𝑝 ∈ ( Poly1 ‘ 𝑓 ) ( ( ( eval1 ‘ 𝑓 ) ‘ 𝑝 ) ‘ 𝑥 ) = ( 0g ‘ 𝑒 ) ) } |
| 26 |
0 25
|
wceq |
⊢ /AlgExt = { 〈 𝑒 , 𝑓 〉 ∣ ( 𝑒 /FldExt 𝑓 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑒 ) ∃ 𝑝 ∈ ( Poly1 ‘ 𝑓 ) ( ( ( eval1 ‘ 𝑓 ) ‘ 𝑝 ) ‘ 𝑥 ) = ( 0g ‘ 𝑒 ) ) } |