Metamath Proof Explorer


Definition df-algext

Description: Definition of the algebraic extension relation. (Contributed by Thierry Arnoux, 29-Jul-2023)

Ref Expression
Assertion df-algext /AlgExt = { ⟨ 𝑒 , 𝑓 ⟩ ∣ ( 𝑒 /FldExt 𝑓 ∧ ( 𝑒 IntgRing ( Base ‘ 𝑓 ) ) = ( Base ‘ 𝑒 ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 calgext /AlgExt
1 ve 𝑒
2 vf 𝑓
3 1 cv 𝑒
4 cfldext /FldExt
5 2 cv 𝑓
6 3 5 4 wbr 𝑒 /FldExt 𝑓
7 cirng IntgRing
8 cbs Base
9 5 8 cfv ( Base ‘ 𝑓 )
10 3 9 7 co ( 𝑒 IntgRing ( Base ‘ 𝑓 ) )
11 3 8 cfv ( Base ‘ 𝑒 )
12 10 11 wceq ( 𝑒 IntgRing ( Base ‘ 𝑓 ) ) = ( Base ‘ 𝑒 )
13 6 12 wa ( 𝑒 /FldExt 𝑓 ∧ ( 𝑒 IntgRing ( Base ‘ 𝑓 ) ) = ( Base ‘ 𝑒 ) )
14 13 1 2 copab { ⟨ 𝑒 , 𝑓 ⟩ ∣ ( 𝑒 /FldExt 𝑓 ∧ ( 𝑒 IntgRing ( Base ‘ 𝑓 ) ) = ( Base ‘ 𝑒 ) ) }
15 0 14 wceq /AlgExt = { ⟨ 𝑒 , 𝑓 ⟩ ∣ ( 𝑒 /FldExt 𝑓 ∧ ( 𝑒 IntgRing ( Base ‘ 𝑓 ) ) = ( Base ‘ 𝑒 ) ) }