Metamath Proof Explorer


Definition df-algext

Description: Definition of the algebraic extension relation. (Contributed by Thierry Arnoux, 29-Jul-2023)

Ref Expression
Assertion df-algext /AlgExt = e f | e /FldExt f e IntgRing Base f = Base e

Detailed syntax breakdown

Step Hyp Ref Expression
0 calgext class /AlgExt
1 ve setvar e
2 vf setvar f
3 1 cv setvar e
4 cfldext class /FldExt
5 2 cv setvar f
6 3 5 4 wbr wff e /FldExt f
7 cirng class IntgRing
8 cbs class Base
9 5 8 cfv class Base f
10 3 9 7 co class e IntgRing Base f
11 3 8 cfv class Base e
12 10 11 wceq wff e IntgRing Base f = Base e
13 6 12 wa wff e /FldExt f e IntgRing Base f = Base e
14 13 1 2 copab class e f | e /FldExt f e IntgRing Base f = Base e
15 0 14 wceq wff /AlgExt = e f | e /FldExt f e IntgRing Base f = Base e