Metamath Proof Explorer


Definition df-algext

Description: Definition of the algebraic extension relation. (Contributed by Thierry Arnoux, 29-Jul-2023)

Ref Expression
Assertion df-algext /AlgExt = e f | e /FldExt f x Base e p Poly 1 f eval 1 f p x = 0 e

Detailed syntax breakdown

Step Hyp Ref Expression
0 calgext class /AlgExt
1 ve setvar e
2 vf setvar f
3 1 cv setvar e
4 cfldext class /FldExt
5 2 cv setvar f
6 3 5 4 wbr wff e /FldExt f
7 vx setvar x
8 cbs class Base
9 3 8 cfv class Base e
10 vp setvar p
11 cpl1 class Poly 1
12 5 11 cfv class Poly 1 f
13 ce1 class eval 1
14 5 13 cfv class eval 1 f
15 10 cv setvar p
16 15 14 cfv class eval 1 f p
17 7 cv setvar x
18 17 16 cfv class eval 1 f p x
19 c0g class 0 𝑔
20 3 19 cfv class 0 e
21 18 20 wceq wff eval 1 f p x = 0 e
22 21 10 12 wrex wff p Poly 1 f eval 1 f p x = 0 e
23 22 7 9 wral wff x Base e p Poly 1 f eval 1 f p x = 0 e
24 6 23 wa wff e /FldExt f x Base e p Poly 1 f eval 1 f p x = 0 e
25 24 1 2 copab class e f | e /FldExt f x Base e p Poly 1 f eval 1 f p x = 0 e
26 0 25 wceq wff /AlgExt = e f | e /FldExt f x Base e p Poly 1 f eval 1 f p x = 0 e