Metamath Proof Explorer


Definition df-algext

Description: Definition of the algebraic extension relation. (Contributed by Thierry Arnoux, 29-Jul-2023)

Ref Expression
Assertion df-algext /AlgExt=ef|e/FldExtfxBaseepPoly1feval1fpx=0e

Detailed syntax breakdown

Step Hyp Ref Expression
0 calgext class/AlgExt
1 ve setvare
2 vf setvarf
3 1 cv setvare
4 cfldext class/FldExt
5 2 cv setvarf
6 3 5 4 wbr wffe/FldExtf
7 vx setvarx
8 cbs classBase
9 3 8 cfv classBasee
10 vp setvarp
11 cpl1 classPoly1
12 5 11 cfv classPoly1f
13 ce1 classeval1
14 5 13 cfv classeval1f
15 10 cv setvarp
16 15 14 cfv classeval1fp
17 7 cv setvarx
18 17 16 cfv classeval1fpx
19 c0g class0𝑔
20 3 19 cfv class0e
21 18 20 wceq wffeval1fpx=0e
22 21 10 12 wrex wffpPoly1feval1fpx=0e
23 22 7 9 wral wffxBaseepPoly1feval1fpx=0e
24 6 23 wa wffe/FldExtfxBaseepPoly1feval1fpx=0e
25 24 1 2 copab classef|e/FldExtfxBaseepPoly1feval1fpx=0e
26 0 25 wceq wff/AlgExt=ef|e/FldExtfxBaseepPoly1feval1fpx=0e