Metamath Proof Explorer


Definition df-fldext

Description: Definition of the field extension relation. (Contributed by Thierry Arnoux, 29-Jul-2023)

Ref Expression
Assertion df-fldext /FldExt = e f | e Field f Field f = e 𝑠 Base f Base f SubRing e

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfldext class /FldExt
1 ve setvar e
2 vf setvar f
3 1 cv setvar e
4 cfield class Field
5 3 4 wcel wff e Field
6 2 cv setvar f
7 6 4 wcel wff f Field
8 5 7 wa wff e Field f Field
9 cress class 𝑠
10 cbs class Base
11 6 10 cfv class Base f
12 3 11 9 co class e 𝑠 Base f
13 6 12 wceq wff f = e 𝑠 Base f
14 csubrg class SubRing
15 3 14 cfv class SubRing e
16 11 15 wcel wff Base f SubRing e
17 13 16 wa wff f = e 𝑠 Base f Base f SubRing e
18 8 17 wa wff e Field f Field f = e 𝑠 Base f Base f SubRing e
19 18 1 2 copab class e f | e Field f Field f = e 𝑠 Base f Base f SubRing e
20 0 19 wceq wff /FldExt = e f | e Field f Field f = e 𝑠 Base f Base f SubRing e