Metamath Proof Explorer


Definition df-fldext

Description: Definition of the field extension relation. (Contributed by Thierry Arnoux, 29-Jul-2023)

Ref Expression
Assertion df-fldext /FldExt=ef|eFieldfFieldf=e𝑠BasefBasefSubRinge

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfldext class/FldExt
1 ve setvare
2 vf setvarf
3 1 cv setvare
4 cfield classField
5 3 4 wcel wffeField
6 2 cv setvarf
7 6 4 wcel wfffField
8 5 7 wa wffeFieldfField
9 cress class𝑠
10 cbs classBase
11 6 10 cfv classBasef
12 3 11 9 co classe𝑠Basef
13 6 12 wceq wfff=e𝑠Basef
14 csubrg classSubRing
15 3 14 cfv classSubRinge
16 11 15 wcel wffBasefSubRinge
17 13 16 wa wfff=e𝑠BasefBasefSubRinge
18 8 17 wa wffeFieldfFieldf=e𝑠BasefBasefSubRinge
19 18 1 2 copab classef|eFieldfFieldf=e𝑠BasefBasefSubRinge
20 0 19 wceq wff/FldExt=ef|eFieldfFieldf=e𝑠BasefBasefSubRinge