Description: The field extension is a relation. (Contributed by Thierry Arnoux, 29-Jul-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | relfldext | ⊢ Rel /FldExt |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fldext | ⊢ /FldExt = { 〈 𝑒 , 𝑓 〉 ∣ ( ( 𝑒 ∈ Field ∧ 𝑓 ∈ Field ) ∧ ( 𝑓 = ( 𝑒 ↾s ( Base ‘ 𝑓 ) ) ∧ ( Base ‘ 𝑓 ) ∈ ( SubRing ‘ 𝑒 ) ) ) } | |
2 | 1 | relopabiv | ⊢ Rel /FldExt |