Description: The field extension is a relation. (Contributed by Thierry Arnoux, 29-Jul-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | relfldext | |- Rel /FldExt |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fldext | |- /FldExt = { <. e , f >. | ( ( e e. Field /\ f e. Field ) /\ ( f = ( e |`s ( Base ` f ) ) /\ ( Base ` f ) e. ( SubRing ` e ) ) ) } |
|
2 | 1 | relopabiv | |- Rel /FldExt |