Metamath Proof Explorer


Definition df-finext

Description: Definition of the finite field extension relation. (Contributed by Thierry Arnoux, 29-Jul-2023)

Ref Expression
Assertion df-finext /FinExt = { ⟨ 𝑒 , 𝑓 ⟩ ∣ ( 𝑒 /FldExt 𝑓 ∧ ( 𝑒 [:] 𝑓 ) ∈ ℕ0 ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfinext /FinExt
1 ve 𝑒
2 vf 𝑓
3 1 cv 𝑒
4 cfldext /FldExt
5 2 cv 𝑓
6 3 5 4 wbr 𝑒 /FldExt 𝑓
7 cextdg [:]
8 3 5 7 co ( 𝑒 [:] 𝑓 )
9 cn0 0
10 8 9 wcel ( 𝑒 [:] 𝑓 ) ∈ ℕ0
11 6 10 wa ( 𝑒 /FldExt 𝑓 ∧ ( 𝑒 [:] 𝑓 ) ∈ ℕ0 )
12 11 1 2 copab { ⟨ 𝑒 , 𝑓 ⟩ ∣ ( 𝑒 /FldExt 𝑓 ∧ ( 𝑒 [:] 𝑓 ) ∈ ℕ0 ) }
13 0 12 wceq /FinExt = { ⟨ 𝑒 , 𝑓 ⟩ ∣ ( 𝑒 /FldExt 𝑓 ∧ ( 𝑒 [:] 𝑓 ) ∈ ℕ0 ) }