Description: Definition of the finite field extension relation. (Contributed by Thierry Arnoux, 29-Jul-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | df-finext | ⊢ /FinExt = { 〈 𝑒 , 𝑓 〉 ∣ ( 𝑒 /FldExt 𝑓 ∧ ( 𝑒 [:] 𝑓 ) ∈ ℕ0 ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cfinext | ⊢ /FinExt | |
1 | ve | ⊢ 𝑒 | |
2 | vf | ⊢ 𝑓 | |
3 | 1 | cv | ⊢ 𝑒 |
4 | cfldext | ⊢ /FldExt | |
5 | 2 | cv | ⊢ 𝑓 |
6 | 3 5 4 | wbr | ⊢ 𝑒 /FldExt 𝑓 |
7 | cextdg | ⊢ [:] | |
8 | 3 5 7 | co | ⊢ ( 𝑒 [:] 𝑓 ) |
9 | cn0 | ⊢ ℕ0 | |
10 | 8 9 | wcel | ⊢ ( 𝑒 [:] 𝑓 ) ∈ ℕ0 |
11 | 6 10 | wa | ⊢ ( 𝑒 /FldExt 𝑓 ∧ ( 𝑒 [:] 𝑓 ) ∈ ℕ0 ) |
12 | 11 1 2 | copab | ⊢ { 〈 𝑒 , 𝑓 〉 ∣ ( 𝑒 /FldExt 𝑓 ∧ ( 𝑒 [:] 𝑓 ) ∈ ℕ0 ) } |
13 | 0 12 | wceq | ⊢ /FinExt = { 〈 𝑒 , 𝑓 〉 ∣ ( 𝑒 /FldExt 𝑓 ∧ ( 𝑒 [:] 𝑓 ) ∈ ℕ0 ) } |