Description: Definition of the finite field extension relation. (Contributed by Thierry Arnoux, 29-Jul-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-finext | ⊢ /FinExt = { 〈 𝑒 , 𝑓 〉 ∣ ( 𝑒 /FldExt 𝑓 ∧ ( 𝑒 [:] 𝑓 ) ∈ ℕ0 ) } | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | cfinext | ⊢ /FinExt | |
| 1 | ve | ⊢ 𝑒 | |
| 2 | vf | ⊢ 𝑓 | |
| 3 | 1 | cv | ⊢ 𝑒 | 
| 4 | cfldext | ⊢ /FldExt | |
| 5 | 2 | cv | ⊢ 𝑓 | 
| 6 | 3 5 4 | wbr | ⊢ 𝑒 /FldExt 𝑓 | 
| 7 | cextdg | ⊢ [:] | |
| 8 | 3 5 7 | co | ⊢ ( 𝑒 [:] 𝑓 ) | 
| 9 | cn0 | ⊢ ℕ0 | |
| 10 | 8 9 | wcel | ⊢ ( 𝑒 [:] 𝑓 ) ∈ ℕ0 | 
| 11 | 6 10 | wa | ⊢ ( 𝑒 /FldExt 𝑓 ∧ ( 𝑒 [:] 𝑓 ) ∈ ℕ0 ) | 
| 12 | 11 1 2 | copab | ⊢ { 〈 𝑒 , 𝑓 〉 ∣ ( 𝑒 /FldExt 𝑓 ∧ ( 𝑒 [:] 𝑓 ) ∈ ℕ0 ) } | 
| 13 | 0 12 | wceq | ⊢ /FinExt = { 〈 𝑒 , 𝑓 〉 ∣ ( 𝑒 /FldExt 𝑓 ∧ ( 𝑒 [:] 𝑓 ) ∈ ℕ0 ) } |