Metamath Proof Explorer


Definition df-dim

Description: Define the dimension of a vector space as the cardinality of its bases. Note that by lvecdim , all bases are equinumerous. (Contributed by Thierry Arnoux, 6-May-2023)

Ref Expression
Assertion df-dim dim=fV.LBasisf

Detailed syntax breakdown

Step Hyp Ref Expression
0 cldim classdim
1 vf setvarf
2 cvv classV
3 chash class.
4 clbs classLBasis
5 1 cv setvarf
6 5 4 cfv classLBasisf
7 3 6 cima class.LBasisf
8 7 cuni class.LBasisf
9 1 2 8 cmpt classfV.LBasisf
10 0 9 wceq wffdim=fV.LBasisf