Metamath Proof Explorer


Theorem lvecdim

Description: The dimension theorem for vector spaces: any two bases of the same vector space are equinumerous. Proven by using lssacsex and lbsacsbs to show that being a basis for a vector space is equivalent to being a basis for the associated algebraic closure system, and then using acsexdimd . (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypothesis lvecdim.1 J = LBasis W
Assertion lvecdim W LVec S J T J S T

Proof

Step Hyp Ref Expression
1 lvecdim.1 J = LBasis W
2 eqid LSubSp W = LSubSp W
3 eqid mrCls LSubSp W = mrCls LSubSp W
4 eqid Base W = Base W
5 2 3 4 lssacsex W LVec LSubSp W ACS Base W x 𝒫 Base W y Base W z mrCls LSubSp W x y mrCls LSubSp W x y mrCls LSubSp W x z
6 5 3ad2ant1 W LVec S J T J LSubSp W ACS Base W x 𝒫 Base W y Base W z mrCls LSubSp W x y mrCls LSubSp W x y mrCls LSubSp W x z
7 6 simpld W LVec S J T J LSubSp W ACS Base W
8 eqid mrInd LSubSp W = mrInd LSubSp W
9 6 simprd W LVec S J T J x 𝒫 Base W y Base W z mrCls LSubSp W x y mrCls LSubSp W x y mrCls LSubSp W x z
10 simp2 W LVec S J T J S J
11 2 3 4 8 1 lbsacsbs W LVec S J S mrInd LSubSp W mrCls LSubSp W S = Base W
12 11 3ad2ant1 W LVec S J T J S J S mrInd LSubSp W mrCls LSubSp W S = Base W
13 10 12 mpbid W LVec S J T J S mrInd LSubSp W mrCls LSubSp W S = Base W
14 13 simpld W LVec S J T J S mrInd LSubSp W
15 simp3 W LVec S J T J T J
16 2 3 4 8 1 lbsacsbs W LVec T J T mrInd LSubSp W mrCls LSubSp W T = Base W
17 16 3ad2ant1 W LVec S J T J T J T mrInd LSubSp W mrCls LSubSp W T = Base W
18 15 17 mpbid W LVec S J T J T mrInd LSubSp W mrCls LSubSp W T = Base W
19 18 simpld W LVec S J T J T mrInd LSubSp W
20 13 simprd W LVec S J T J mrCls LSubSp W S = Base W
21 18 simprd W LVec S J T J mrCls LSubSp W T = Base W
22 20 21 eqtr4d W LVec S J T J mrCls LSubSp W S = mrCls LSubSp W T
23 7 3 8 9 14 19 22 acsexdimd W LVec S J T J S T