| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lssacsex.1 |
|
| 2 |
|
lssacsex.2 |
|
| 3 |
|
lssacsex.3 |
|
| 4 |
|
lveclmod |
|
| 5 |
3 1
|
lssacs |
|
| 6 |
4 5
|
syl |
|
| 7 |
|
simplll |
|
| 8 |
|
simpllr |
|
| 9 |
8
|
elpwid |
|
| 10 |
|
simplr |
|
| 11 |
|
simpr |
|
| 12 |
|
eqid |
|
| 13 |
1 12 2
|
mrclsp |
|
| 14 |
7 4 13
|
3syl |
|
| 15 |
14
|
fveq1d |
|
| 16 |
14
|
fveq1d |
|
| 17 |
15 16
|
difeq12d |
|
| 18 |
11 17
|
eleqtrrd |
|
| 19 |
3 1 12
|
lspsolv |
|
| 20 |
7 9 10 18 19
|
syl13anc |
|
| 21 |
14
|
fveq1d |
|
| 22 |
20 21
|
eleqtrd |
|
| 23 |
22
|
ralrimiva |
|
| 24 |
23
|
ralrimiva |
|
| 25 |
24
|
ralrimiva |
|
| 26 |
6 25
|
jca |
|