Step |
Hyp |
Ref |
Expression |
1 |
|
lssacsex.1 |
|
2 |
|
lssacsex.2 |
|
3 |
|
lssacsex.3 |
|
4 |
|
lveclmod |
|
5 |
3 1
|
lssacs |
|
6 |
4 5
|
syl |
|
7 |
|
simplll |
|
8 |
|
simpllr |
|
9 |
8
|
elpwid |
|
10 |
|
simplr |
|
11 |
|
simpr |
|
12 |
|
eqid |
|
13 |
1 12 2
|
mrclsp |
|
14 |
7 4 13
|
3syl |
|
15 |
14
|
fveq1d |
|
16 |
14
|
fveq1d |
|
17 |
15 16
|
difeq12d |
|
18 |
11 17
|
eleqtrrd |
|
19 |
3 1 12
|
lspsolv |
|
20 |
7 9 10 18 19
|
syl13anc |
|
21 |
14
|
fveq1d |
|
22 |
20 21
|
eleqtrd |
|
23 |
22
|
ralrimiva |
|
24 |
23
|
ralrimiva |
|
25 |
24
|
ralrimiva |
|
26 |
6 25
|
jca |
|