Metamath Proof Explorer


Theorem lbsextlem1

Description: Lemma for lbsext . The set S is the set of all linearly independent sets containing C ; we show here that it is nonempty. (Contributed by Mario Carneiro, 25-Jun-2014)

Ref Expression
Hypotheses lbsext.v V=BaseW
lbsext.j J=LBasisW
lbsext.n N=LSpanW
lbsext.w φWLVec
lbsext.c φCV
lbsext.x φxC¬xNCx
lbsext.s S=z𝒫V|Czxz¬xNzx
Assertion lbsextlem1 φS

Proof

Step Hyp Ref Expression
1 lbsext.v V=BaseW
2 lbsext.j J=LBasisW
3 lbsext.n N=LSpanW
4 lbsext.w φWLVec
5 lbsext.c φCV
6 lbsext.x φxC¬xNCx
7 lbsext.s S=z𝒫V|Czxz¬xNzx
8 1 fvexi VV
9 8 elpw2 C𝒫VCV
10 5 9 sylibr φC𝒫V
11 ssid CC
12 6 11 jctil φCCxC¬xNCx
13 sseq2 z=CCzCC
14 difeq1 z=Czx=Cx
15 14 fveq2d z=CNzx=NCx
16 15 eleq2d z=CxNzxxNCx
17 16 notbid z=C¬xNzx¬xNCx
18 17 raleqbi1dv z=Cxz¬xNzxxC¬xNCx
19 13 18 anbi12d z=CCzxz¬xNzxCCxC¬xNCx
20 19 7 elrab2 CSC𝒫VCCxC¬xNCx
21 10 12 20 sylanbrc φCS
22 21 ne0d φS