Description: Lemma for lbsext . The set S is the set of all linearly independent sets containing C ; we show here that it is nonempty. (Contributed by Mario Carneiro, 25-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lbsext.v | |
|
lbsext.j | |
||
lbsext.n | |
||
lbsext.w | |
||
lbsext.c | |
||
lbsext.x | |
||
lbsext.s | |
||
Assertion | lbsextlem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lbsext.v | |
|
2 | lbsext.j | |
|
3 | lbsext.n | |
|
4 | lbsext.w | |
|
5 | lbsext.c | |
|
6 | lbsext.x | |
|
7 | lbsext.s | |
|
8 | 1 | fvexi | |
9 | 8 | elpw2 | |
10 | 5 9 | sylibr | |
11 | ssid | |
|
12 | 6 11 | jctil | |
13 | sseq2 | |
|
14 | difeq1 | |
|
15 | 14 | fveq2d | |
16 | 15 | eleq2d | |
17 | 16 | notbid | |
18 | 17 | raleqbi1dv | |
19 | 13 18 | anbi12d | |
20 | 19 7 | elrab2 | |
21 | 10 12 20 | sylanbrc | |
22 | 21 | ne0d | |