Metamath Proof Explorer


Theorem lbsextlem2

Description: Lemma for lbsext . Since A is a chain (actually, we only need it to be closed under binary union), the union T of the spans of each individual element of A is a subspace, and it contains all of U. A (except for our target vector x - we are trying to make x a linear combination of all the other vectors in some set from A ). (Contributed by Mario Carneiro, 25-Jun-2014)

Ref Expression
Hypotheses lbsext.v V=BaseW
lbsext.j J=LBasisW
lbsext.n N=LSpanW
lbsext.w φWLVec
lbsext.c φCV
lbsext.x φxC¬xNCx
lbsext.s S=z𝒫V|Czxz¬xNzx
lbsext.p P=LSubSpW
lbsext.a φAS
lbsext.z φA
lbsext.r φ[⊂]OrA
lbsext.t T=uANux
Assertion lbsextlem2 φTPAxT

Proof

Step Hyp Ref Expression
1 lbsext.v V=BaseW
2 lbsext.j J=LBasisW
3 lbsext.n N=LSpanW
4 lbsext.w φWLVec
5 lbsext.c φCV
6 lbsext.x φxC¬xNCx
7 lbsext.s S=z𝒫V|Czxz¬xNzx
8 lbsext.p P=LSubSpW
9 lbsext.a φAS
10 lbsext.z φA
11 lbsext.r φ[⊂]OrA
12 lbsext.t T=uANux
13 eqidd φScalarW=ScalarW
14 eqidd φBaseScalarW=BaseScalarW
15 1 a1i φV=BaseW
16 eqidd φ+W=+W
17 eqidd φW=W
18 8 a1i φP=LSubSpW
19 lveclmod WLVecWLMod
20 4 19 syl φWLMod
21 7 ssrab3 S𝒫V
22 9 21 sstrdi φA𝒫V
23 22 sselda φuAu𝒫V
24 23 elpwid φuAuV
25 24 ssdifssd φuAuxV
26 1 3 lspssv WLModuxVNuxV
27 20 25 26 syl2an2r φuANuxV
28 27 ralrimiva φuANuxV
29 iunss uANuxVuANuxV
30 28 29 sylibr φuANuxV
31 12 30 eqsstrid φTV
32 12 a1i φT=uANux
33 1 8 3 lspcl WLModuxVNuxP
34 20 25 33 syl2an2r φuANuxP
35 8 lssn0 NuxPNux
36 34 35 syl φuANux
37 36 ralrimiva φuANux
38 r19.2z AuANuxuANux
39 10 37 38 syl2anc φuANux
40 iunn0 uANuxuANux
41 39 40 sylib φuANux
42 32 41 eqnetrd φT
43 12 eleq2i vTvuANux
44 eliun vuANuxuAvNux
45 difeq1 u=mux=mx
46 45 fveq2d u=mNux=Nmx
47 46 eleq2d u=mvNuxvNmx
48 47 cbvrexvw uAvNuxmAvNmx
49 43 44 48 3bitri vTmAvNmx
50 12 eleq2i wTwuANux
51 eliun wuANuxuAwNux
52 difeq1 u=nux=nx
53 52 fveq2d u=nNux=Nnx
54 53 eleq2d u=nwNuxwNnx
55 54 cbvrexvw uAwNuxnAwNnx
56 50 51 55 3bitri wTnAwNnx
57 49 56 anbi12i vTwTmAvNmxnAwNnx
58 reeanv mAnAvNmxwNnxmAvNmxnAwNnx
59 57 58 bitr4i vTwTmAnAvNmxwNnx
60 simp1l φrBaseScalarWmAnAvNmxwNnxφ
61 60 11 syl φrBaseScalarWmAnAvNmxwNnx[⊂]OrA
62 simp2 φrBaseScalarWmAnAvNmxwNnxmAnA
63 sorpssun [⊂]OrAmAnAmnA
64 61 62 63 syl2anc φrBaseScalarWmAnAvNmxwNnxmnA
65 60 20 syl φrBaseScalarWmAnAvNmxwNnxWLMod
66 elssuni mnAmnA
67 64 66 syl φrBaseScalarWmAnAvNmxwNnxmnA
68 sspwuni A𝒫VAV
69 22 68 sylib φAV
70 60 69 syl φrBaseScalarWmAnAvNmxwNnxAV
71 67 70 sstrd φrBaseScalarWmAnAvNmxwNnxmnV
72 71 ssdifssd φrBaseScalarWmAnAvNmxwNnxmnxV
73 1 8 3 lspcl WLModmnxVNmnxP
74 65 72 73 syl2anc φrBaseScalarWmAnAvNmxwNnxNmnxP
75 simp1r φrBaseScalarWmAnAvNmxwNnxrBaseScalarW
76 ssun1 mmn
77 ssdif mmnmxmnx
78 76 77 mp1i φrBaseScalarWmAnAvNmxwNnxmxmnx
79 1 3 lspss WLModmnxVmxmnxNmxNmnx
80 65 72 78 79 syl3anc φrBaseScalarWmAnAvNmxwNnxNmxNmnx
81 simp3l φrBaseScalarWmAnAvNmxwNnxvNmx
82 80 81 sseldd φrBaseScalarWmAnAvNmxwNnxvNmnx
83 ssun2 nmn
84 ssdif nmnnxmnx
85 83 84 mp1i φrBaseScalarWmAnAvNmxwNnxnxmnx
86 1 3 lspss WLModmnxVnxmnxNnxNmnx
87 65 72 85 86 syl3anc φrBaseScalarWmAnAvNmxwNnxNnxNmnx
88 simp3r φrBaseScalarWmAnAvNmxwNnxwNnx
89 87 88 sseldd φrBaseScalarWmAnAvNmxwNnxwNmnx
90 eqid ScalarW=ScalarW
91 eqid BaseScalarW=BaseScalarW
92 eqid +W=+W
93 eqid W=W
94 90 91 92 93 8 lsscl NmnxPrBaseScalarWvNmnxwNmnxrWv+WwNmnx
95 74 75 82 89 94 syl13anc φrBaseScalarWmAnAvNmxwNnxrWv+WwNmnx
96 difeq1 u=mnux=mnx
97 96 fveq2d u=mnNux=Nmnx
98 97 eliuni mnArWv+WwNmnxrWv+WwuANux
99 64 95 98 syl2anc φrBaseScalarWmAnAvNmxwNnxrWv+WwuANux
100 99 12 eleqtrrdi φrBaseScalarWmAnAvNmxwNnxrWv+WwT
101 100 3expia φrBaseScalarWmAnAvNmxwNnxrWv+WwT
102 101 rexlimdvva φrBaseScalarWmAnAvNmxwNnxrWv+WwT
103 59 102 biimtrid φrBaseScalarWvTwTrWv+WwT
104 103 exp4b φrBaseScalarWvTwTrWv+WwT
105 104 3imp2 φrBaseScalarWvTwTrWv+WwT
106 13 14 15 16 17 18 31 42 105 islssd φTP
107 eldifi yAxyA
108 107 adantl φyAxyA
109 eldifn yAx¬yx
110 109 ad2antlr φyAxuA¬yx
111 eldif yuxyu¬yx
112 1 3 lspssid WLModuxVuxNux
113 20 25 112 syl2an2r φuAuxNux
114 113 adantlr φyAxuAuxNux
115 114 sseld φyAxuAyuxyNux
116 111 115 biimtrrid φyAxuAyu¬yxyNux
117 110 116 mpan2d φyAxuAyuyNux
118 117 reximdva φyAxuAyuuAyNux
119 eluni2 yAuAyu
120 eliun yuANuxuAyNux
121 118 119 120 3imtr4g φyAxyAyuANux
122 108 121 mpd φyAxyuANux
123 122 ex φyAxyuANux
124 123 ssrdv φAxuANux
125 124 12 sseqtrrdi φAxT
126 106 125 jca φTPAxT