| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lbsext.v |
|
| 2 |
|
lbsext.j |
|
| 3 |
|
lbsext.n |
|
| 4 |
|
lbsext.w |
|
| 5 |
|
lbsext.c |
|
| 6 |
|
lbsext.x |
|
| 7 |
|
lbsext.s |
|
| 8 |
|
lbsext.p |
|
| 9 |
|
lbsext.a |
|
| 10 |
|
lbsext.z |
|
| 11 |
|
lbsext.r |
|
| 12 |
|
lbsext.t |
|
| 13 |
|
eqidd |
|
| 14 |
|
eqidd |
|
| 15 |
1
|
a1i |
|
| 16 |
|
eqidd |
|
| 17 |
|
eqidd |
|
| 18 |
8
|
a1i |
|
| 19 |
|
lveclmod |
|
| 20 |
4 19
|
syl |
|
| 21 |
7
|
ssrab3 |
|
| 22 |
9 21
|
sstrdi |
|
| 23 |
22
|
sselda |
|
| 24 |
23
|
elpwid |
|
| 25 |
24
|
ssdifssd |
|
| 26 |
1 3
|
lspssv |
|
| 27 |
20 25 26
|
syl2an2r |
|
| 28 |
27
|
ralrimiva |
|
| 29 |
|
iunss |
|
| 30 |
28 29
|
sylibr |
|
| 31 |
12 30
|
eqsstrid |
|
| 32 |
12
|
a1i |
|
| 33 |
1 8 3
|
lspcl |
|
| 34 |
20 25 33
|
syl2an2r |
|
| 35 |
8
|
lssn0 |
|
| 36 |
34 35
|
syl |
|
| 37 |
36
|
ralrimiva |
|
| 38 |
|
r19.2z |
|
| 39 |
10 37 38
|
syl2anc |
|
| 40 |
|
iunn0 |
|
| 41 |
39 40
|
sylib |
|
| 42 |
32 41
|
eqnetrd |
|
| 43 |
12
|
eleq2i |
|
| 44 |
|
eliun |
|
| 45 |
|
difeq1 |
|
| 46 |
45
|
fveq2d |
|
| 47 |
46
|
eleq2d |
|
| 48 |
47
|
cbvrexvw |
|
| 49 |
43 44 48
|
3bitri |
|
| 50 |
12
|
eleq2i |
|
| 51 |
|
eliun |
|
| 52 |
|
difeq1 |
|
| 53 |
52
|
fveq2d |
|
| 54 |
53
|
eleq2d |
|
| 55 |
54
|
cbvrexvw |
|
| 56 |
50 51 55
|
3bitri |
|
| 57 |
49 56
|
anbi12i |
|
| 58 |
|
reeanv |
|
| 59 |
57 58
|
bitr4i |
|
| 60 |
|
simp1l |
|
| 61 |
60 11
|
syl |
|
| 62 |
|
simp2 |
|
| 63 |
|
sorpssun |
|
| 64 |
61 62 63
|
syl2anc |
|
| 65 |
60 20
|
syl |
|
| 66 |
|
elssuni |
|
| 67 |
64 66
|
syl |
|
| 68 |
|
sspwuni |
|
| 69 |
22 68
|
sylib |
|
| 70 |
60 69
|
syl |
|
| 71 |
67 70
|
sstrd |
|
| 72 |
71
|
ssdifssd |
|
| 73 |
1 8 3
|
lspcl |
|
| 74 |
65 72 73
|
syl2anc |
|
| 75 |
|
simp1r |
|
| 76 |
|
ssun1 |
|
| 77 |
|
ssdif |
|
| 78 |
76 77
|
mp1i |
|
| 79 |
1 3
|
lspss |
|
| 80 |
65 72 78 79
|
syl3anc |
|
| 81 |
|
simp3l |
|
| 82 |
80 81
|
sseldd |
|
| 83 |
|
ssun2 |
|
| 84 |
|
ssdif |
|
| 85 |
83 84
|
mp1i |
|
| 86 |
1 3
|
lspss |
|
| 87 |
65 72 85 86
|
syl3anc |
|
| 88 |
|
simp3r |
|
| 89 |
87 88
|
sseldd |
|
| 90 |
|
eqid |
|
| 91 |
|
eqid |
|
| 92 |
|
eqid |
|
| 93 |
|
eqid |
|
| 94 |
90 91 92 93 8
|
lsscl |
|
| 95 |
74 75 82 89 94
|
syl13anc |
|
| 96 |
|
difeq1 |
|
| 97 |
96
|
fveq2d |
|
| 98 |
97
|
eliuni |
|
| 99 |
64 95 98
|
syl2anc |
|
| 100 |
99 12
|
eleqtrrdi |
|
| 101 |
100
|
3expia |
|
| 102 |
101
|
rexlimdvva |
|
| 103 |
59 102
|
biimtrid |
|
| 104 |
103
|
exp4b |
|
| 105 |
104
|
3imp2 |
|
| 106 |
13 14 15 16 17 18 31 42 105
|
islssd |
|
| 107 |
|
eldifi |
|
| 108 |
107
|
adantl |
|
| 109 |
|
eldifn |
|
| 110 |
109
|
ad2antlr |
|
| 111 |
|
eldif |
|
| 112 |
1 3
|
lspssid |
|
| 113 |
20 25 112
|
syl2an2r |
|
| 114 |
113
|
adantlr |
|
| 115 |
114
|
sseld |
|
| 116 |
111 115
|
biimtrrid |
|
| 117 |
110 116
|
mpan2d |
|
| 118 |
117
|
reximdva |
|
| 119 |
|
eluni2 |
|
| 120 |
|
eliun |
|
| 121 |
118 119 120
|
3imtr4g |
|
| 122 |
108 121
|
mpd |
|
| 123 |
122
|
ex |
|
| 124 |
123
|
ssrdv |
|
| 125 |
124 12
|
sseqtrrdi |
|
| 126 |
106 125
|
jca |
|