Step |
Hyp |
Ref |
Expression |
1 |
|
lbsext.v |
|- V = ( Base ` W ) |
2 |
|
lbsext.j |
|- J = ( LBasis ` W ) |
3 |
|
lbsext.n |
|- N = ( LSpan ` W ) |
4 |
|
lbsext.w |
|- ( ph -> W e. LVec ) |
5 |
|
lbsext.c |
|- ( ph -> C C_ V ) |
6 |
|
lbsext.x |
|- ( ph -> A. x e. C -. x e. ( N ` ( C \ { x } ) ) ) |
7 |
|
lbsext.s |
|- S = { z e. ~P V | ( C C_ z /\ A. x e. z -. x e. ( N ` ( z \ { x } ) ) ) } |
8 |
1
|
fvexi |
|- V e. _V |
9 |
8
|
elpw2 |
|- ( C e. ~P V <-> C C_ V ) |
10 |
5 9
|
sylibr |
|- ( ph -> C e. ~P V ) |
11 |
|
ssid |
|- C C_ C |
12 |
6 11
|
jctil |
|- ( ph -> ( C C_ C /\ A. x e. C -. x e. ( N ` ( C \ { x } ) ) ) ) |
13 |
|
sseq2 |
|- ( z = C -> ( C C_ z <-> C C_ C ) ) |
14 |
|
difeq1 |
|- ( z = C -> ( z \ { x } ) = ( C \ { x } ) ) |
15 |
14
|
fveq2d |
|- ( z = C -> ( N ` ( z \ { x } ) ) = ( N ` ( C \ { x } ) ) ) |
16 |
15
|
eleq2d |
|- ( z = C -> ( x e. ( N ` ( z \ { x } ) ) <-> x e. ( N ` ( C \ { x } ) ) ) ) |
17 |
16
|
notbid |
|- ( z = C -> ( -. x e. ( N ` ( z \ { x } ) ) <-> -. x e. ( N ` ( C \ { x } ) ) ) ) |
18 |
17
|
raleqbi1dv |
|- ( z = C -> ( A. x e. z -. x e. ( N ` ( z \ { x } ) ) <-> A. x e. C -. x e. ( N ` ( C \ { x } ) ) ) ) |
19 |
13 18
|
anbi12d |
|- ( z = C -> ( ( C C_ z /\ A. x e. z -. x e. ( N ` ( z \ { x } ) ) ) <-> ( C C_ C /\ A. x e. C -. x e. ( N ` ( C \ { x } ) ) ) ) ) |
20 |
19 7
|
elrab2 |
|- ( C e. S <-> ( C e. ~P V /\ ( C C_ C /\ A. x e. C -. x e. ( N ` ( C \ { x } ) ) ) ) ) |
21 |
10 12 20
|
sylanbrc |
|- ( ph -> C e. S ) |
22 |
21
|
ne0d |
|- ( ph -> S =/= (/) ) |