Metamath Proof Explorer


Theorem lbsacsbs

Description: Being a basis in a vector space is equivalent to being a basis in the associated algebraic closure system. Equivalent to islbs2 . (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses lbsacsbs.1 A = LSubSp W
lbsacsbs.2 N = mrCls A
lbsacsbs.3 X = Base W
lbsacsbs.4 I = mrInd A
lbsacsbs.5 J = LBasis W
Assertion lbsacsbs W LVec S J S I N S = X

Proof

Step Hyp Ref Expression
1 lbsacsbs.1 A = LSubSp W
2 lbsacsbs.2 N = mrCls A
3 lbsacsbs.3 X = Base W
4 lbsacsbs.4 I = mrInd A
5 lbsacsbs.5 J = LBasis W
6 eqid LSpan W = LSpan W
7 3 5 6 islbs2 W LVec S J S X LSpan W S = X x S ¬ x LSpan W S x
8 lveclmod W LVec W LMod
9 1 6 2 mrclsp W LMod LSpan W = N
10 8 9 syl W LVec LSpan W = N
11 10 fveq1d W LVec LSpan W S = N S
12 11 eqeq1d W LVec LSpan W S = X N S = X
13 10 fveq1d W LVec LSpan W S x = N S x
14 13 eleq2d W LVec x LSpan W S x x N S x
15 14 notbid W LVec ¬ x LSpan W S x ¬ x N S x
16 15 ralbidv W LVec x S ¬ x LSpan W S x x S ¬ x N S x
17 12 16 3anbi23d W LVec S X LSpan W S = X x S ¬ x LSpan W S x S X N S = X x S ¬ x N S x
18 3anan32 S X N S = X x S ¬ x N S x S X x S ¬ x N S x N S = X
19 3 1 lssmre W LMod A Moore X
20 2 4 ismri A Moore X S I S X x S ¬ x N S x
21 8 19 20 3syl W LVec S I S X x S ¬ x N S x
22 21 anbi1d W LVec S I N S = X S X x S ¬ x N S x N S = X
23 18 22 bitr4id W LVec S X N S = X x S ¬ x N S x S I N S = X
24 7 17 23 3bitrd W LVec S J S I N S = X