Metamath Proof Explorer


Theorem lbsacsbs

Description: Being a basis in a vector space is equivalent to being a basis in the associated algebraic closure system. Equivalent to islbs2 . (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses lbsacsbs.1 A=LSubSpW
lbsacsbs.2 N=mrClsA
lbsacsbs.3 X=BaseW
lbsacsbs.4 I=mrIndA
lbsacsbs.5 J=LBasisW
Assertion lbsacsbs WLVecSJSINS=X

Proof

Step Hyp Ref Expression
1 lbsacsbs.1 A=LSubSpW
2 lbsacsbs.2 N=mrClsA
3 lbsacsbs.3 X=BaseW
4 lbsacsbs.4 I=mrIndA
5 lbsacsbs.5 J=LBasisW
6 eqid LSpanW=LSpanW
7 3 5 6 islbs2 WLVecSJSXLSpanWS=XxS¬xLSpanWSx
8 lveclmod WLVecWLMod
9 1 6 2 mrclsp WLModLSpanW=N
10 8 9 syl WLVecLSpanW=N
11 10 fveq1d WLVecLSpanWS=NS
12 11 eqeq1d WLVecLSpanWS=XNS=X
13 10 fveq1d WLVecLSpanWSx=NSx
14 13 eleq2d WLVecxLSpanWSxxNSx
15 14 notbid WLVec¬xLSpanWSx¬xNSx
16 15 ralbidv WLVecxS¬xLSpanWSxxS¬xNSx
17 12 16 3anbi23d WLVecSXLSpanWS=XxS¬xLSpanWSxSXNS=XxS¬xNSx
18 3anan32 SXNS=XxS¬xNSxSXxS¬xNSxNS=X
19 3 1 lssmre WLModAMooreX
20 2 4 ismri AMooreXSISXxS¬xNSx
21 8 19 20 3syl WLVecSISXxS¬xNSx
22 21 anbi1d WLVecSINS=XSXxS¬xNSxNS=X
23 18 22 bitr4id WLVecSXNS=XxS¬xNSxSINS=X
24 7 17 23 3bitrd WLVecSJSINS=X