Description: Being a basis in a vector space is equivalent to being a basis in the associated algebraic closure system. Equivalent to islbs2 . (Contributed by David Moews, 1-May-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lbsacsbs.1 | |
|
lbsacsbs.2 | |
||
lbsacsbs.3 | |
||
lbsacsbs.4 | |
||
lbsacsbs.5 | |
||
Assertion | lbsacsbs | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lbsacsbs.1 | |
|
2 | lbsacsbs.2 | |
|
3 | lbsacsbs.3 | |
|
4 | lbsacsbs.4 | |
|
5 | lbsacsbs.5 | |
|
6 | eqid | |
|
7 | 3 5 6 | islbs2 | |
8 | lveclmod | |
|
9 | 1 6 2 | mrclsp | |
10 | 8 9 | syl | |
11 | 10 | fveq1d | |
12 | 11 | eqeq1d | |
13 | 10 | fveq1d | |
14 | 13 | eleq2d | |
15 | 14 | notbid | |
16 | 15 | ralbidv | |
17 | 12 16 | 3anbi23d | |
18 | 3anan32 | |
|
19 | 3 1 | lssmre | |
20 | 2 4 | ismri | |
21 | 8 19 20 | 3syl | |
22 | 21 | anbi1d | |
23 | 18 22 | bitr4id | |
24 | 7 17 23 | 3bitrd | |