| Step |
Hyp |
Ref |
Expression |
| 1 |
|
islbs2.v |
|
| 2 |
|
islbs2.j |
|
| 3 |
|
islbs2.n |
|
| 4 |
1 2
|
lbsss |
|
| 5 |
4
|
adantl |
|
| 6 |
1 2 3
|
lbssp |
|
| 7 |
6
|
adantl |
|
| 8 |
|
lveclmod |
|
| 9 |
|
eqid |
|
| 10 |
9
|
lvecdrng |
|
| 11 |
|
eqid |
|
| 12 |
|
eqid |
|
| 13 |
11 12
|
drngunz |
|
| 14 |
10 13
|
syl |
|
| 15 |
8 14
|
jca |
|
| 16 |
2 3 9 12 11
|
lbsind2 |
|
| 17 |
15 16
|
syl3an1 |
|
| 18 |
17
|
3expa |
|
| 19 |
18
|
ralrimiva |
|
| 20 |
5 7 19
|
3jca |
|
| 21 |
|
simpr1 |
|
| 22 |
|
simpr2 |
|
| 23 |
|
id |
|
| 24 |
|
sneq |
|
| 25 |
24
|
difeq2d |
|
| 26 |
25
|
fveq2d |
|
| 27 |
23 26
|
eleq12d |
|
| 28 |
27
|
notbid |
|
| 29 |
|
simplr3 |
|
| 30 |
|
simprl |
|
| 31 |
28 29 30
|
rspcdva |
|
| 32 |
|
simpll |
|
| 33 |
|
simprr |
|
| 34 |
|
eldifsn |
|
| 35 |
33 34
|
sylib |
|
| 36 |
21
|
adantr |
|
| 37 |
36 30
|
sseldd |
|
| 38 |
|
eqid |
|
| 39 |
|
eqid |
|
| 40 |
1 9 38 39 11 3
|
lspsnvs |
|
| 41 |
32 35 37 40
|
syl3anc |
|
| 42 |
41
|
sseq1d |
|
| 43 |
|
eqid |
|
| 44 |
8
|
adantr |
|
| 45 |
44
|
adantr |
|
| 46 |
36
|
ssdifssd |
|
| 47 |
1 43 3
|
lspcl |
|
| 48 |
45 46 47
|
syl2anc |
|
| 49 |
35
|
simpld |
|
| 50 |
1 9 38 39
|
lmodvscl |
|
| 51 |
45 49 37 50
|
syl3anc |
|
| 52 |
1 43 3 45 48 51
|
ellspsn5b |
|
| 53 |
1 43 3 45 48 37
|
ellspsn5b |
|
| 54 |
42 52 53
|
3bitr4d |
|
| 55 |
31 54
|
mtbird |
|
| 56 |
55
|
ralrimivva |
|
| 57 |
1 9 38 39 2 3 11
|
islbs |
|
| 58 |
57
|
adantr |
|
| 59 |
21 22 56 58
|
mpbir3and |
|
| 60 |
20 59
|
impbida |
|