Description: A basis is linearly independent; that is, every element is not in the span of the remainder of the basis. (Contributed by Mario Carneiro, 25-Jun-2014) (Revised by Mario Carneiro, 12-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lbsind2.j | |
|
lbsind2.n | |
||
lbsind2.f | |
||
lbsind2.o | |
||
lbsind2.z | |
||
Assertion | lbsind2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lbsind2.j | |
|
2 | lbsind2.n | |
|
3 | lbsind2.f | |
|
4 | lbsind2.o | |
|
5 | lbsind2.z | |
|
6 | simp1l | |
|
7 | simp2 | |
|
8 | simp3 | |
|
9 | eqid | |
|
10 | 9 1 | lbsel | |
11 | 7 8 10 | syl2anc | |
12 | eqid | |
|
13 | 9 3 12 4 | lmodvs1 | |
14 | 6 11 13 | syl2anc | |
15 | 3 | lmodring | |
16 | eqid | |
|
17 | 16 4 | ringidcl | |
18 | 6 15 17 | 3syl | |
19 | simp1r | |
|
20 | 9 1 2 3 12 16 5 | lbsind | |
21 | 7 8 18 19 20 | syl22anc | |
22 | 14 21 | eqneltrrd | |