Metamath Proof Explorer


Theorem lbsind2

Description: A basis is linearly independent; that is, every element is not in the span of the remainder of the basis. (Contributed by Mario Carneiro, 25-Jun-2014) (Revised by Mario Carneiro, 12-Jan-2015)

Ref Expression
Hypotheses lbsind2.j J=LBasisW
lbsind2.n N=LSpanW
lbsind2.f F=ScalarW
lbsind2.o 1˙=1F
lbsind2.z 0˙=0F
Assertion lbsind2 WLMod1˙0˙BJEB¬ENBE

Proof

Step Hyp Ref Expression
1 lbsind2.j J=LBasisW
2 lbsind2.n N=LSpanW
3 lbsind2.f F=ScalarW
4 lbsind2.o 1˙=1F
5 lbsind2.z 0˙=0F
6 simp1l WLMod1˙0˙BJEBWLMod
7 simp2 WLMod1˙0˙BJEBBJ
8 simp3 WLMod1˙0˙BJEBEB
9 eqid BaseW=BaseW
10 9 1 lbsel BJEBEBaseW
11 7 8 10 syl2anc WLMod1˙0˙BJEBEBaseW
12 eqid W=W
13 9 3 12 4 lmodvs1 WLModEBaseW1˙WE=E
14 6 11 13 syl2anc WLMod1˙0˙BJEB1˙WE=E
15 3 lmodring WLModFRing
16 eqid BaseF=BaseF
17 16 4 ringidcl FRing1˙BaseF
18 6 15 17 3syl WLMod1˙0˙BJEB1˙BaseF
19 simp1r WLMod1˙0˙BJEB1˙0˙
20 9 1 2 3 12 16 5 lbsind BJEB1˙BaseF1˙0˙¬1˙WENBE
21 7 8 18 19 20 syl22anc WLMod1˙0˙BJEB¬1˙WENBE
22 14 21 eqneltrrd WLMod1˙0˙BJEB¬ENBE