Step |
Hyp |
Ref |
Expression |
1 |
|
df-refld |
|- RRfld = ( CCfld |`s RR ) |
2 |
|
rebase |
|- RR = ( Base ` RRfld ) |
3 |
2
|
oveq2i |
|- ( CCfld |`s RR ) = ( CCfld |`s ( Base ` RRfld ) ) |
4 |
1 3
|
eqtri |
|- RRfld = ( CCfld |`s ( Base ` RRfld ) ) |
5 |
|
resubdrg |
|- ( RR e. ( SubRing ` CCfld ) /\ RRfld e. DivRing ) |
6 |
5
|
simpli |
|- RR e. ( SubRing ` CCfld ) |
7 |
2 6
|
eqeltrri |
|- ( Base ` RRfld ) e. ( SubRing ` CCfld ) |
8 |
|
cndrng |
|- CCfld e. DivRing |
9 |
|
cncrng |
|- CCfld e. CRing |
10 |
|
isfld |
|- ( CCfld e. Field <-> ( CCfld e. DivRing /\ CCfld e. CRing ) ) |
11 |
8 9 10
|
mpbir2an |
|- CCfld e. Field |
12 |
|
refld |
|- RRfld e. Field |
13 |
|
brfldext |
|- ( ( CCfld e. Field /\ RRfld e. Field ) -> ( CCfld /FldExt RRfld <-> ( RRfld = ( CCfld |`s ( Base ` RRfld ) ) /\ ( Base ` RRfld ) e. ( SubRing ` CCfld ) ) ) ) |
14 |
11 12 13
|
mp2an |
|- ( CCfld /FldExt RRfld <-> ( RRfld = ( CCfld |`s ( Base ` RRfld ) ) /\ ( Base ` RRfld ) e. ( SubRing ` CCfld ) ) ) |
15 |
4 7 14
|
mpbir2an |
|- CCfld /FldExt RRfld |