Metamath Proof Explorer


Theorem ccfldextrr

Description: The field of the complex numbers is an extension of the field of the real numbers. (Contributed by Thierry Arnoux, 20-Jul-2023)

Ref Expression
Assertion ccfldextrr fld /FldExtfld

Proof

Step Hyp Ref Expression
1 df-refld fld = ( ℂflds ℝ )
2 rebase ℝ = ( Base ‘ ℝfld )
3 2 oveq2i ( ℂflds ℝ ) = ( ℂflds ( Base ‘ ℝfld ) )
4 1 3 eqtri fld = ( ℂflds ( Base ‘ ℝfld ) )
5 resubdrg ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℝfld ∈ DivRing )
6 5 simpli ℝ ∈ ( SubRing ‘ ℂfld )
7 2 6 eqeltrri ( Base ‘ ℝfld ) ∈ ( SubRing ‘ ℂfld )
8 cndrng fld ∈ DivRing
9 cncrng fld ∈ CRing
10 isfld ( ℂfld ∈ Field ↔ ( ℂfld ∈ DivRing ∧ ℂfld ∈ CRing ) )
11 8 9 10 mpbir2an fld ∈ Field
12 refld fld ∈ Field
13 brfldext ( ( ℂfld ∈ Field ∧ ℝfld ∈ Field ) → ( ℂfld /FldExtfld ↔ ( ℝfld = ( ℂflds ( Base ‘ ℝfld ) ) ∧ ( Base ‘ ℝfld ) ∈ ( SubRing ‘ ℂfld ) ) ) )
14 11 12 13 mp2an ( ℂfld /FldExtfld ↔ ( ℝfld = ( ℂflds ( Base ‘ ℝfld ) ) ∧ ( Base ‘ ℝfld ) ∈ ( SubRing ‘ ℂfld ) ) )
15 4 7 14 mpbir2an fld /FldExtfld