| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-refld |
⊢ ℝfld = ( ℂfld ↾s ℝ ) |
| 2 |
|
rebase |
⊢ ℝ = ( Base ‘ ℝfld ) |
| 3 |
2
|
oveq2i |
⊢ ( ℂfld ↾s ℝ ) = ( ℂfld ↾s ( Base ‘ ℝfld ) ) |
| 4 |
1 3
|
eqtri |
⊢ ℝfld = ( ℂfld ↾s ( Base ‘ ℝfld ) ) |
| 5 |
|
resubdrg |
⊢ ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℝfld ∈ DivRing ) |
| 6 |
5
|
simpli |
⊢ ℝ ∈ ( SubRing ‘ ℂfld ) |
| 7 |
2 6
|
eqeltrri |
⊢ ( Base ‘ ℝfld ) ∈ ( SubRing ‘ ℂfld ) |
| 8 |
|
cndrng |
⊢ ℂfld ∈ DivRing |
| 9 |
|
cncrng |
⊢ ℂfld ∈ CRing |
| 10 |
|
isfld |
⊢ ( ℂfld ∈ Field ↔ ( ℂfld ∈ DivRing ∧ ℂfld ∈ CRing ) ) |
| 11 |
8 9 10
|
mpbir2an |
⊢ ℂfld ∈ Field |
| 12 |
|
refld |
⊢ ℝfld ∈ Field |
| 13 |
|
brfldext |
⊢ ( ( ℂfld ∈ Field ∧ ℝfld ∈ Field ) → ( ℂfld /FldExt ℝfld ↔ ( ℝfld = ( ℂfld ↾s ( Base ‘ ℝfld ) ) ∧ ( Base ‘ ℝfld ) ∈ ( SubRing ‘ ℂfld ) ) ) ) |
| 14 |
11 12 13
|
mp2an |
⊢ ( ℂfld /FldExt ℝfld ↔ ( ℝfld = ( ℂfld ↾s ( Base ‘ ℝfld ) ) ∧ ( Base ‘ ℝfld ) ∈ ( SubRing ‘ ℂfld ) ) ) |
| 15 |
4 7 14
|
mpbir2an |
⊢ ℂfld /FldExt ℝfld |