Metamath Proof Explorer


Theorem fldextfld1

Description: A field extension is only defined if the extension is a field. (Contributed by Thierry Arnoux, 29-Jul-2023)

Ref Expression
Assertion fldextfld1 E /FldExt F E Field

Proof

Step Hyp Ref Expression
1 opabssxp e f | e Field f Field f = e 𝑠 Base f Base f SubRing e Field × Field
2 df-br E /FldExt F E F /FldExt
3 2 biimpi E /FldExt F E F /FldExt
4 df-fldext /FldExt = e f | e Field f Field f = e 𝑠 Base f Base f SubRing e
5 3 4 eleqtrdi E /FldExt F E F e f | e Field f Field f = e 𝑠 Base f Base f SubRing e
6 1 5 sselid E /FldExt F E F Field × Field
7 opelxp1 E F Field × Field E Field
8 6 7 syl E /FldExt F E Field