Step |
Hyp |
Ref |
Expression |
1 |
|
fldextfld1 |
|- ( E /FldExt F -> E e. Field ) |
2 |
|
fldextfld2 |
|- ( E /FldExt F -> F e. Field ) |
3 |
|
brfldext |
|- ( ( E e. Field /\ F e. Field ) -> ( E /FldExt F <-> ( F = ( E |`s ( Base ` F ) ) /\ ( Base ` F ) e. ( SubRing ` E ) ) ) ) |
4 |
1 2 3
|
syl2anc |
|- ( E /FldExt F -> ( E /FldExt F <-> ( F = ( E |`s ( Base ` F ) ) /\ ( Base ` F ) e. ( SubRing ` E ) ) ) ) |
5 |
4
|
ibi |
|- ( E /FldExt F -> ( F = ( E |`s ( Base ` F ) ) /\ ( Base ` F ) e. ( SubRing ` E ) ) ) |
6 |
5
|
simpld |
|- ( E /FldExt F -> F = ( E |`s ( Base ` F ) ) ) |