Step |
Hyp |
Ref |
Expression |
1 |
|
fldextfld1 |
|- ( E /FldExt F -> E e. Field ) |
2 |
|
fldextfld2 |
|- ( E /FldExt F -> F e. Field ) |
3 |
|
breq12 |
|- ( ( e = E /\ f = F ) -> ( e /FldExt f <-> E /FldExt F ) ) |
4 |
|
oveq12 |
|- ( ( e = E /\ f = F ) -> ( e [:] f ) = ( E [:] F ) ) |
5 |
4
|
eleq1d |
|- ( ( e = E /\ f = F ) -> ( ( e [:] f ) e. NN0 <-> ( E [:] F ) e. NN0 ) ) |
6 |
3 5
|
anbi12d |
|- ( ( e = E /\ f = F ) -> ( ( e /FldExt f /\ ( e [:] f ) e. NN0 ) <-> ( E /FldExt F /\ ( E [:] F ) e. NN0 ) ) ) |
7 |
|
df-finext |
|- /FinExt = { <. e , f >. | ( e /FldExt f /\ ( e [:] f ) e. NN0 ) } |
8 |
6 7
|
brabga |
|- ( ( E e. Field /\ F e. Field ) -> ( E /FinExt F <-> ( E /FldExt F /\ ( E [:] F ) e. NN0 ) ) ) |
9 |
1 2 8
|
syl2anc |
|- ( E /FldExt F -> ( E /FinExt F <-> ( E /FldExt F /\ ( E [:] F ) e. NN0 ) ) ) |
10 |
9
|
bianabs |
|- ( E /FldExt F -> ( E /FinExt F <-> ( E [:] F ) e. NN0 ) ) |