Step |
Hyp |
Ref |
Expression |
1 |
|
relfldext |
|- Rel /FldExt |
2 |
1
|
brrelex1i |
|- ( E /FldExt F -> E e. _V ) |
3 |
|
elrelimasn |
|- ( Rel /FldExt -> ( F e. ( /FldExt " { E } ) <-> E /FldExt F ) ) |
4 |
1 3
|
ax-mp |
|- ( F e. ( /FldExt " { E } ) <-> E /FldExt F ) |
5 |
4
|
biimpri |
|- ( E /FldExt F -> F e. ( /FldExt " { E } ) ) |
6 |
|
fvexd |
|- ( E /FldExt F -> ( dim ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) e. _V ) |
7 |
|
simpl |
|- ( ( e = E /\ f = F ) -> e = E ) |
8 |
7
|
fveq2d |
|- ( ( e = E /\ f = F ) -> ( subringAlg ` e ) = ( subringAlg ` E ) ) |
9 |
|
simpr |
|- ( ( e = E /\ f = F ) -> f = F ) |
10 |
9
|
fveq2d |
|- ( ( e = E /\ f = F ) -> ( Base ` f ) = ( Base ` F ) ) |
11 |
8 10
|
fveq12d |
|- ( ( e = E /\ f = F ) -> ( ( subringAlg ` e ) ` ( Base ` f ) ) = ( ( subringAlg ` E ) ` ( Base ` F ) ) ) |
12 |
11
|
fveq2d |
|- ( ( e = E /\ f = F ) -> ( dim ` ( ( subringAlg ` e ) ` ( Base ` f ) ) ) = ( dim ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) |
13 |
|
sneq |
|- ( e = E -> { e } = { E } ) |
14 |
13
|
imaeq2d |
|- ( e = E -> ( /FldExt " { e } ) = ( /FldExt " { E } ) ) |
15 |
|
df-extdg |
|- [:] = ( e e. _V , f e. ( /FldExt " { e } ) |-> ( dim ` ( ( subringAlg ` e ) ` ( Base ` f ) ) ) ) |
16 |
12 14 15
|
ovmpox |
|- ( ( E e. _V /\ F e. ( /FldExt " { E } ) /\ ( dim ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) e. _V ) -> ( E [:] F ) = ( dim ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) |
17 |
2 5 6 16
|
syl3anc |
|- ( E /FldExt F -> ( E [:] F ) = ( dim ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) |