Metamath Proof Explorer


Theorem extdgval

Description: Value of the field extension degree operation. (Contributed by Thierry Arnoux, 29-Jul-2023)

Ref Expression
Assertion extdgval E /FldExt F E .:. F = dim subringAlg E Base F

Proof

Step Hyp Ref Expression
1 relfldext Rel /FldExt
2 1 brrelex1i E /FldExt F E V
3 elrelimasn Rel /FldExt F /FldExt E E /FldExt F
4 1 3 ax-mp F /FldExt E E /FldExt F
5 4 biimpri E /FldExt F F /FldExt E
6 fvexd E /FldExt F dim subringAlg E Base F V
7 simpl e = E f = F e = E
8 7 fveq2d e = E f = F subringAlg e = subringAlg E
9 simpr e = E f = F f = F
10 9 fveq2d e = E f = F Base f = Base F
11 8 10 fveq12d e = E f = F subringAlg e Base f = subringAlg E Base F
12 11 fveq2d e = E f = F dim subringAlg e Base f = dim subringAlg E Base F
13 sneq e = E e = E
14 13 imaeq2d e = E /FldExt e = /FldExt E
15 df-extdg .:. = e V , f /FldExt e dim subringAlg e Base f
16 12 14 15 ovmpox E V F /FldExt E dim subringAlg E Base F V E .:. F = dim subringAlg E Base F
17 2 5 6 16 syl3anc E /FldExt F E .:. F = dim subringAlg E Base F