Metamath Proof Explorer


Theorem fldextsralvec

Description: The subring algebra associated with a field extension is a vector space. (Contributed by Thierry Arnoux, 3-Aug-2023)

Ref Expression
Assertion fldextsralvec E/FldExtFsubringAlgEBaseFLVec

Proof

Step Hyp Ref Expression
1 fldextfld1 E/FldExtFEField
2 isfld EFieldEDivRingECRing
3 1 2 sylib E/FldExtFEDivRingECRing
4 3 simpld E/FldExtFEDivRing
5 fldextress E/FldExtFF=E𝑠BaseF
6 fldextfld2 E/FldExtFFField
7 isfld FFieldFDivRingFCRing
8 6 7 sylib E/FldExtFFDivRingFCRing
9 8 simpld E/FldExtFFDivRing
10 5 9 eqeltrrd E/FldExtFE𝑠BaseFDivRing
11 eqid BaseF=BaseF
12 11 fldextsubrg E/FldExtFBaseFSubRingE
13 eqid subringAlgEBaseF=subringAlgEBaseF
14 eqid E𝑠BaseF=E𝑠BaseF
15 13 14 sralvec EDivRingE𝑠BaseFDivRingBaseFSubRingEsubringAlgEBaseFLVec
16 4 10 12 15 syl3anc E/FldExtFsubringAlgEBaseFLVec