Metamath Proof Explorer


Theorem fldextsralvec

Description: The subring algebra associated with a field extension is a vector space. (Contributed by Thierry Arnoux, 3-Aug-2023)

Ref Expression
Assertion fldextsralvec E /FldExt F subringAlg E Base F LVec

Proof

Step Hyp Ref Expression
1 fldextfld1 E /FldExt F E Field
2 isfld E Field E DivRing E CRing
3 1 2 sylib E /FldExt F E DivRing E CRing
4 3 simpld E /FldExt F E DivRing
5 fldextress E /FldExt F F = E 𝑠 Base F
6 fldextfld2 E /FldExt F F Field
7 isfld F Field F DivRing F CRing
8 6 7 sylib E /FldExt F F DivRing F CRing
9 8 simpld E /FldExt F F DivRing
10 5 9 eqeltrrd E /FldExt F E 𝑠 Base F DivRing
11 eqid Base F = Base F
12 11 fldextsubrg E /FldExt F Base F SubRing E
13 eqid subringAlg E Base F = subringAlg E Base F
14 eqid E 𝑠 Base F = E 𝑠 Base F
15 13 14 sralvec E DivRing E 𝑠 Base F DivRing Base F SubRing E subringAlg E Base F LVec
16 4 10 12 15 syl3anc E /FldExt F subringAlg E Base F LVec