Step |
Hyp |
Ref |
Expression |
1 |
|
fldextfld1 |
⊢ ( 𝐸 /FldExt 𝐹 → 𝐸 ∈ Field ) |
2 |
|
isfld |
⊢ ( 𝐸 ∈ Field ↔ ( 𝐸 ∈ DivRing ∧ 𝐸 ∈ CRing ) ) |
3 |
1 2
|
sylib |
⊢ ( 𝐸 /FldExt 𝐹 → ( 𝐸 ∈ DivRing ∧ 𝐸 ∈ CRing ) ) |
4 |
3
|
simpld |
⊢ ( 𝐸 /FldExt 𝐹 → 𝐸 ∈ DivRing ) |
5 |
|
fldextress |
⊢ ( 𝐸 /FldExt 𝐹 → 𝐹 = ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ) |
6 |
|
fldextfld2 |
⊢ ( 𝐸 /FldExt 𝐹 → 𝐹 ∈ Field ) |
7 |
|
isfld |
⊢ ( 𝐹 ∈ Field ↔ ( 𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing ) ) |
8 |
6 7
|
sylib |
⊢ ( 𝐸 /FldExt 𝐹 → ( 𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing ) ) |
9 |
8
|
simpld |
⊢ ( 𝐸 /FldExt 𝐹 → 𝐹 ∈ DivRing ) |
10 |
5 9
|
eqeltrrd |
⊢ ( 𝐸 /FldExt 𝐹 → ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ∈ DivRing ) |
11 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
12 |
11
|
fldextsubrg |
⊢ ( 𝐸 /FldExt 𝐹 → ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ 𝐸 ) ) |
13 |
|
eqid |
⊢ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) = ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) |
14 |
|
eqid |
⊢ ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) = ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) |
15 |
13 14
|
sralvec |
⊢ ( ( 𝐸 ∈ DivRing ∧ ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ∈ DivRing ∧ ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ 𝐸 ) ) → ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ∈ LVec ) |
16 |
4 10 12 15
|
syl3anc |
⊢ ( 𝐸 /FldExt 𝐹 → ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ∈ LVec ) |