| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fldextfld1 |
|- ( E /FldExt F -> E e. Field ) |
| 2 |
|
isfld |
|- ( E e. Field <-> ( E e. DivRing /\ E e. CRing ) ) |
| 3 |
1 2
|
sylib |
|- ( E /FldExt F -> ( E e. DivRing /\ E e. CRing ) ) |
| 4 |
3
|
simpld |
|- ( E /FldExt F -> E e. DivRing ) |
| 5 |
|
fldextress |
|- ( E /FldExt F -> F = ( E |`s ( Base ` F ) ) ) |
| 6 |
|
fldextfld2 |
|- ( E /FldExt F -> F e. Field ) |
| 7 |
|
isfld |
|- ( F e. Field <-> ( F e. DivRing /\ F e. CRing ) ) |
| 8 |
6 7
|
sylib |
|- ( E /FldExt F -> ( F e. DivRing /\ F e. CRing ) ) |
| 9 |
8
|
simpld |
|- ( E /FldExt F -> F e. DivRing ) |
| 10 |
5 9
|
eqeltrrd |
|- ( E /FldExt F -> ( E |`s ( Base ` F ) ) e. DivRing ) |
| 11 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
| 12 |
11
|
fldextsubrg |
|- ( E /FldExt F -> ( Base ` F ) e. ( SubRing ` E ) ) |
| 13 |
|
eqid |
|- ( ( subringAlg ` E ) ` ( Base ` F ) ) = ( ( subringAlg ` E ) ` ( Base ` F ) ) |
| 14 |
|
eqid |
|- ( E |`s ( Base ` F ) ) = ( E |`s ( Base ` F ) ) |
| 15 |
13 14
|
sralvec |
|- ( ( E e. DivRing /\ ( E |`s ( Base ` F ) ) e. DivRing /\ ( Base ` F ) e. ( SubRing ` E ) ) -> ( ( subringAlg ` E ) ` ( Base ` F ) ) e. LVec ) |
| 16 |
4 10 12 15
|
syl3anc |
|- ( E /FldExt F -> ( ( subringAlg ` E ) ` ( Base ` F ) ) e. LVec ) |